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ABSTRACT

Introduction: Von Willebrand factor (VWF) multimer analysis is essential for diagnosing and classifying von Willebrand dis-
ease (VWD) but requires expert interpretation and is subject to inter-rater variability. We developed an automated image analysis
pipeline using deep learning to improve the reproducibility and efficiency of VWF multimer pattern classification.

Methods: We trained a YOLOVS8 deep learning model on 514 gel images (6168 labeled instances) to classify VWF multimer pat-
terns into 12 classes. The model was validated on 192 images (2304 instances) and tested on an independent set of 94 images (1128
instances). Images underwent preprocessing, including histogram equalization, contrast enhancement, and gamma correction.
Two expert raters provided ground truth classifications.

Results: The model achieved 91% accuracy compared to Expert 1 (macro-averaged precision=0.851, recall=0.757, F1-
score =0.786) and 87% accuracy compared to Expert 2 (macro-averaged precision =0.653, recall =0.653, F1-score = 0.641). Inter-
rater agreement was very high between experts (x=0.883), with strong agreement between the model and Expert 1 (x=0.845)
and good agreement with Expert 2 (x=0.773). The model performed exceptionally well on common patterns (F1>0.93) but
showed lower performance on rare subtypes.

Conclusion: Automated VWF multimer analysis using deep learning demonstrates high accuracy in pattern classification and
could standardize the interpretation of VWF multimer patterns. While not replacing expert analysis, this approach could im-
prove the efficiency of expert human review, potentially streamlining laboratory workflow and expanding access to VWF mul-
timer testing.

1 | Introduction as ultra-large molecular weight multimers and is cleaved
by the plasma protease ADAMTSI13 into low, intermediate,
Von Willebrand factor (VWF) is a large multimeric glyco- and high molecular weight multimers [2, 3]. A normal in-

protein with essential roles in primary hemostasis [1]. VWF dividual has a uniform distribution of all three sizes in the
is synthesized by endothelial cells and megakaryocytes  plasma [4].

Karthik Anand and Vincent Olteanu contributed equally.

© 2025 John Wiley & Sons Ltd.

730 International Journal of Laboratory Hematology, 2025; 47:730-737
https://doi.org/10.1111/ijlh.14455


https://doi.org/10.1111/ijlh.14455
https://orcid.org/0000-0002-6969-929X
https://orcid.org/0000-0001-7627-9560
mailto:
mailto:seheult.jansen@mayo.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fijlh.14455&domain=pdf&date_stamp=2025-03-02

VWF multimer analysis is essential in the diagnosis of both
congenital von Willebrand disease (VWD) and acquired von
Willebrand syndrome (AVWS), which can both present with
mucocutaneous bleeding [5, 6]. VWF multimer analysis by ei-
ther manual or semi-automated electrophoresis and immuno-
blotting can aid in discriminating among type 1, type 2, and
type 3 VWD, as well as among subtypes of type 2 VWD [7, 8].

Despite diverse methodologies, VWF multimer analysis gener-
ally consists of five steps: (1) electrophoresis of a sample in an
agarose gel, (2) in-gel fixation or transfer of the electrophoretic
protein product to a membrane, (3) immunodetection of the pro-
tein using a labeled anti-VWF antibody, (4) visualization of the
VWF multimer bands in the gel or membrane, and (5) interpre-
tation or quantification of the VWF multimer bands [9, 10].

Unfortunately, due to the high level of expertise required, long
manual analysis time, and high complexity, VWF multimer
analysis has historically only been performed in coagulation
reference laboratories [11]. There is substantial inter-rater vari-
ability in the interpretation of some VWF multimer patterns,
especially the subtle loss of high molecular weight multimers in
some cases of AVWS [12]. For this reason, current laboratory
workflows often require the evaluation of all multimer gel lanes
by two experts [13, 14].

Computer vision methods have the potential to improve the re-
producibility of VWF multimer gel interpretation and improve
efficiency and turnaround times in the clinical laboratory [15].
In this study, we developed an automated image analysis pipe-
line to detect and classify sample and normal control lanes in
electrophoresis gel images.

2 | Methods

Our laboratory utilizes a multi-day protocol for von Willebrand
Factor (VWF) multimer analysis using a 2% agarose separating
gel. Gel images are captured on the Odyssey infrared imaging
system (LI-COR Biotech, Lincoln, NE, USA). Our protocol has
been optimized through validation studies to handle samples
across the VWF antigen range without requiring pre-dilution
normalization. A validation study specifically examining sam-
ples with elevated VWF:Ag levels showed no additional value
in pre-diluting samples with the 2% SDS sample prep buffer. For
standard samples, we use 10 uL sample with 5uL bromophenol
blue and 85 uL buffer, and for low VWF:Ag samples (< 30%), we
use 20 uL sample with 5uL bromophenol blue and 75 uL buffer.
Post-electrophoresis, our methodology allows for adjustment
of brightness and contrast in gel images to optimize band vi-
sualization across the range of VWF concentrations. Each gel
image typically contains 10 patient sample lanes and two nor-
mal control lanes (positions 3 and 9); occasionally, one or more
lanes may be left blank or empty. The normal control consists of
pooled plasma from normal donors, prepared from our standard
citrated plasma aliquots that are frozen at —70°C shortly after
processing. To ensure consistency and stability, we evaluate and
establish a new normal pool every 18 months. This standardized
approach to control material preparation and pooling mini-
mizes potential variability that could affect the algorithm's per-
formance across different control lots.

The YOLOvV8 model was chosen for its state-of-the-art perfor-
mance in object detection and instance segmentation tasks [16].
The model was trained to classify patient sample lanes into
one of 12 classes or patterns and to identify the normal control
lanes and whether the controls were acceptable or unacceptable
(failed). The training set comprised 514 gel images, containing
a total of 6168 labeled instances across 12 classes (Table 1). The
validation set consisted of 192 gel images, containing 2304 la-
beled instances across 12 classes (Table 1). Training and vali-
dation gel images were collected from 2021-2022 and 2024; a
subset of 120 images was hand-selected to include atypical mul-
timer patterns to improve class balance. The independent test
set of 94 images with 1128 instances was hand-selected from
2023 to include at least one abnormal pattern on each gel image.
The date range for the training, validation, and test sets spanned
multiple lots of critical reagents (i.e., agarose, primary and sec-
ondary antibodies and normal control) used in the analytical
method (Table S1). The original classifications of the gel images
reported by the laboratory (called Expert 2) were verified or cor-
rected by another expert (called Expert 1) to establish ground
truth for model training. Expert 2 represented one of up to 10
coagulation consultants reviewing VWF multimer gels for clin-
ical cases, such that the same expert did not adjudicate all gel
images. Performance in the test dataset was evaluated against
Expert 1 “ground truth” and also against the Expert 2 clinically
reported classifications. Examples of multimer patterns are
shown in Figure 1.

The original gel images were 443 X 709 pixels in size and stored
as 16-bit grayscale TIFF files. To prepare these images for model
training, we developed a custom preprocessing pipeline. This
pipeline included several enhancement steps to improve image
quality and contrast. First, we applied histogram equalization to
normalize the intensity distribution across the image. This was
followed by Contrast Limited Adaptive Histogram Equalization
(CLAHE) with a clip limit of 50.0 and a tile grid size of 5x5,
which helped to enhance local contrast. We then applied gamma
correction with a gamma value of 0.7 to adjust image bright-
ness. Finally, the images were converted from 16-bit to 8-bit
depth, scaling the pixel intensities appropriately. This conver-
sion was necessary to make the images compatible with the
YOLOV8 model input requirements and to replicate the image
characteristics used by trained experts when visually analyzing
gel patterns. The preprocessing steps were implemented using
OpenCV and applied to all images in the training, validation,
and testing sets.

Training was performed for 500 epochs using a batch size of
36 and an image size of 736 X 736 pixels. The YOLO model was
trained using a set of hyperparameters optimized for the specific
task. The learning rate started at 0.00381 and decreased by a
learning rate factor of 0.00497 using cosine annealing. A mo-
mentum of 0.86125 was applied with a weight decay of 0.00042.
The model used a warm-up period of 4.03571 epochs with a
warm-up momentum of 0.46311. Loss coefficients were set to
7.30202 for bounding box regression, 0.61146 for classification,
and 1.5547 for distribution focal loss. Data augmentation tech-
niques included subtle color adjustments (HSV shifts), scaling
(up to 29.048%), horizontal flipping (28.949% probability), and
mosaic augmentation (77.523% probability). No vertical flipping,
shearing, or perspective transformations were applied. These
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TABLE1 | Class distribution in labeled training and validation sets.

Class Training set Training% Validationset Validation% Testset Test%
1A (Normal distribution) 3916 63.5% 1436 62.3% 681 60.4%
NORMAL CTRL (Normal Control 987 16.0% 363 15.8% 185 16.4%
Passed)

2H (Acquired loss of highest MWM) 537 8.7% 233 10.1% 78 6.9%
CMA (Suboptimal resolution-repeat) 298 4.8% 134 5.8% 37 3.3%
2B (Loss of high and intermediate 143 2.3% 34 1.5% 42 3.7%
MWM)

2D (Loss of high MWM) 77 1.2% 19 0.8% 20 1.8%
3B (Absence of low, intermediate and 65 25 1.1% 37 3.3%
high MWM)

4A (Presence of ultra-large MWM) 61 1.0% 23 1.0% 19 1.7%
CTRL FAILED (Normal Control 41 0.7% 21 0.9% 3 0.3%
Failed)

6D (Interfering substance — cannot 23 0.4% 14 0.6% 10 0.9%
interpret)

1F (Abnormal triplet band 12 0.2% 2 0.1% 12 1.1%
infrastructure)

BLANK (No sample loaded in lane) 8 0.1% 0 0% 4 0.4%
Total 6168 100% 2304 100% 1128 100%

Abbreviation: MWM, molecular weight multimers.

parameters were carefully tuned to balance model performance
and generalization for the VWF multimer classification task.
The model was trained on an NVIDIA A100-SXM4-40GB GPU.

Model performance was evaluated using the class-specific and
macro-averaged precision, recall, and F1 metrics. Briefly, class-
specific scores measure these metrics for each class in a clas-
sification task—precision (positive predictive value) shows the
proportion of correct positive predictions out of all positive pre-
dictions for that class, while recall (sensitivity) shows the pro-
portion of actual positive cases that were correctly identified for
that class. The F1 score is the harmonic mean of precision and
recall, which means it heavily penalizes cases where either pre-
cision or recall is very low, ensuring that a good F1 score reflects
balanced performance on both metrics. The macro-averaged
value is calculated by first computing the metric for each class
individually and then taking the arithmetic mean across all
classes. This approach is particularly useful when class imbal-
ance exists in the dataset, as it gives equal weight to minority
and majority classes, preventing the overall performance as-
sessment from being dominated by the more frequent classes.
However, this equal weighting means macro-averaging may not
reflect performance on the raw distribution of classes in real-
world applications where class frequencies differ significantly.

A Python-based web application was developed to automatically
process machine-generated outputs using the deep learning
model and visualize the results for expert review and approval.
Built with Dash Open Source, a Python framework commonly

used in data science and machine learning, the application al-
lows users to upload batch outputs for automated analysis. After
processing, the results are stored in a local database for future
analysis, and both the gel images and the model's outputs are vi-
sualized for expert review. The application also enables review-
ers to manually override the model's inference with their own
classification, which is stored in the database to inform potential
future model optimizations.

3 | Results

The model's learning progress in the training and validation
sets, as well as the Precision-Recall curves and confusion matrix
for the validation set, are shown in the Supporting Information
(Figures S1, S2 and S3). In the test image set, the deep learn-
ing model demonstrated high performance in classifying VWF
multimer patterns and identified all but one lane in the 94 test
images. When compared to Expert 1, the model achieved an
overall accuracy of 91%, with macro-averaged precision, recall,
and F1-score of 0.851, 0.757, and 0.786, respectively (Table 2).
Performance against Expert 2 was slightly lower, with an overall
accuracy of 87% and macro-averaged precision, recall, and F1-
score of 0.653, 0.653, and 0.641, respectively (Table 2).

Inter-rater agreement was assessed using Cohen's Kappa co-
efficient. The agreement between Expert 1 and Expert 2 was
very high (kx=0.883). The model showed strong agreement
with Expert 1 (xk=0.845) and good agreement with Expert 2
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FIGURE1 | Enhanced gel images showing Normal control lanes in positions 3 and 9 (NORMAL CTRL), failed control lanes (CTRL FAILED),

normal VWF multimer distribution (1A), abnormal triplet band infrastructure (1F), loss of high and intermediate MWM (2B), acquired loss of high-
est MWM (2H), loss of high MWM (2D), absent or barely detectable low, intermediate and high MWM (3B), presence of ultra-large MWM (4A), in-
terfering substance—cannot interpret (6D), suboptimal resolution (CMA).

(k=0.773). To assess the significance of differences in classifi-
cation between the model and experts, a Cochran's Q test was
performed for each class (Table S2). Significant differences
(p<0.05) were observed for classes 1A, 1F, 2D, and CMA, indi-
cating areas where the model's performance differed from the
experts.

The model performed exceptionally well on the most common
classes,suchas 1A and NORMAL CTRL, with F1-scores above 0.93
for both experts. However, performance was lower for some less
common classes, particularly 1F, 2D, and CMA. As shown in the
confusion matrices in the Figures S4 and S5, and the Sankey dia-
gram in Figure 2 demonstrating how discrepancies were allocated
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TABLE 2 | Class-specific and macro-averaged performance metrics of the deep learning model by VWF multimer pattern class, compared to two
expert raters.

vs Expert1 vs Expert 2
Class Precision Recall Fl1-score Precision Recall F1-score
1A 0.930 0.974 0.951 0.926 0.947 0.936
1F 0.800 0.333 0.471 0.400 0.222 0.286
2B 0.857 0.857 0.857 0.833 0.700 0.761
2D 0.545 0.300 0.387 0.273 0.333 0.300
2H 0.714 0.705 0.710 0.519 0.597 0.556
3B 0.805 0.892 0.846 0.707 0.879 0.784
4A 0.875 0.737 0.800 0.688 0.786 0.733
6D 1.000 0.800 0.889 1.000 0.727 0.842
BLANK 0.800 1.000 0.889 0.800 1.000 0.889
CMA 0.905 0.514 0.655 0.381 0.174 0.239
CTRL FAILED 1.000 1.000 1.000 0.333 0.500 0.400
NORMAL CTRL 0.978 0.978 0.978 0.973 0.968 0.970
Macro-averaged metrics 0.851 0.757 0.786 0.653 0.653 0.641

Note: 1A (Normal distribution), NORMAL CTRL (Normal Control Passed), 2H (Acquired loss of highest MWM), CMA (Suboptimal resolution - repeat), 2B (Loss
of high and intermediate MWM), 2D (Loss of high MWM), 3B (Absence of low, intermediate and high MWM), 4A (Presence of ultra-large MWM), CTRL FAILED
(Normal Control Failed), 6D (Interfering substance—cannot interpret), 1F (Abnormal triplet band infrastructure), BLANK (No sample loaded in lane).

El4A(S)
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FIGURE 2 | The Sankey diagram visualizes the discrepancies between ground truth classifications (on the left) and model Inferences (on the
right) for the test image set. Each label represents a unique VWF multimer pattern class, with the number of occurrences of misclassifications shown
in parentheses. Arrows represent transitions between ground truth and model classifications, with the thickness of the arrows corresponding to the
frequency of each discrepancy. Arrows are color-coded based on the type of discrepancy: Blue for Minor discrepancies and red for Major discrep-
ancies as assessed by Expert 1. 1A (Normal distribution), NORMAL CTRL (Normal Control Passed), 2H (Acquired loss of highest MWM), CMA
(Suboptimal resolution—repeat), 2B (Loss of high and intermediate MWM), 2D (Loss of high MWM), 3B (Absence of low, intermediate and high

MWM), 4A (Presence of ultra-large MWM), CTRL FAILED (Normal Control Failed), 6D (Interfering substance—cannot interpret), 1F (Abnormal
triplet band infrastructure), BLANK (No sample loaded in lane).
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between Expert 1 and the model inferences, there was class con-
fusion between 2H versus 2D versus 2B and between CMA ver-
sus 1A versus 2H. The distribution of classes in the test image set
for gel positions 1 through 12, excluding the normal control lanes
(positions 3 and 9) was relatively balanced (Figure S6). Examples
of model inferences on test images are shown in Figure 3 and a
screenshot of the Dash web application is shown in the Figure S7.

M1A

W

4 | Discussion

This study demonstrates that automated von Willebrand factor
(VWF) multimer image analysis using deep learning techniques
can improve the diagnosis and classification of von Willebrand
disease (VWD). The high performance of the YOLOV8 model in
classifying VWF multimer patterns, with overall accuracies of

—
4160 _0 80]

FIGURE 3 | Enhanced gel images showing model inferences in colored boxes for normal control lanes in positions 3 and 9 (NORMAL CTRL),
failed control lanes (CTRL FAILED), normal VWF multimer distribution (1A), acquired loss of highest MWM (2H), loss of high MWM (2D), loss
of high and intermediate MWM (2B), absence of low, intermediate and high MWM (3B), suboptimal resolution (CMA), interfering substances (6D),
abnormal triplet band infrastructure (1F). Discordances between the model inferences and ground truth classifications are shown in red font beside

the corresponding lane; 5 of the 72 lanes in these example images were misclassified by the model.
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91% and 87% compared to two expert raters, indicates the poten-
tial of this approach to standardize and expedite VWF multimer
interpretation.

VWF multimer analysis plays a critical role in diagnosing and
classifying both congenital VWD and acquired von Willebrand
syndrome (AVWS) [5]. As noted by Saadalla et al., VWF mul-
timer patterns can provide key insights into the underlying
pathologic mechanisms related to VWF dimerization, multi-
merization, secretion, and proteolysis that result in different
VWD subtypes [14]. However, traditional human interpretation
of multimer patterns requires expert training and is complex,
time-consuming, and subject to inter-rater variability, especially
for subtle abnormalities [13].

The automated deep learning approach described here addresses
many of the limitations of manual analysis. By providing rapid,
objective classification of multimer patterns, it could improve
the efficiency and reproducibility of VWD diagnosis. The model
showed particularly high performance for common patterns
like type 1 VWD and normal controls. Its ability to detect subtle
loss of high molecular weight multimers in AVWS is promising,
as this can be challenging even for expert raters [12]. The mod-
el's performance in identifying poor resolution lanes for repeat
analysis and artifacts due to monoclonal immunoglobulins is
also reassuring.

The lower performance for some rare subtypes like type 1F and
2D VWD likely reflects their limited representation in the train-
ing dataset. These rare variants have distinct multimer patterns
that require careful evaluation [14]. Expanding the training set
to include more examples of these uncommon subtypes could
further improve the model's diagnostic capabilities. The confu-
sion between closely related patterns like 2D versus 2B VWD
reflects the overlapping features of these subtypes, which can
be challenging to distinguish for human experts [17]. Additional
clinical and laboratory data may be needed to definitively clas-
sify these cases.

This automated approach to VWF multimer classification
should be viewed as a complement to, rather than a replacement
for, expert analysis. The implementation of this AI-driven work-
flow aims to reduce manual effort while maintaining diagnostic
accuracy through strategic expert oversight. This could stream-
line workflow in coagulation laboratories and potentially enable
wider access to VWF multimer testing. VWF multimer inter-
pretation also requires integration with other clinical and lab-
oratory findings [14]. While Figure 2 reveals several instances
where the model classified abnormal patterns as normal (1A),
many of these discrepancies would be caught by existing lab-
oratory safeguards. For example, abnormal VWF activity/anti-
gen ratios (<0.7) would trigger expert review regardless of the
automated classification, which is particularly important for
catching misclassifications of types 2B, 2D, and subtle 2H pat-
terns. Some apparent discrepancies, such as CMA to 1A tran-
sitions, may actually represent cases where automated analysis
outperformed initial human interpretation, potentially reduc-
ing unnecessary repeat testing. Other discrepancies, like those
involving type 1F or 3B patterns, reflect either known chal-
lenges in pattern recognition that affect expert raters as well,
or differences in describing intensity rather than true pattern

misclassifications. Based on these findings, successful clinical
implementation would require integration with other laboratory
parameters, maintenance of human oversight in the workflow,
and careful monitoring of discrepancy rates during the initial
rollout and periodically thereafter.

Automated VWF multimer analysis using computer vision
shows considerable promise for improving the classification of
VWF multimer patterns. Further validation on larger image
sets will be important to ensure the model's generalizability.
Integration with other VWD diagnostic tests and clinical data
could create a more comprehensive automated classification
system. Additionally, the ability to quantify multimer band den-
sity, as described for some semi-automated systems [15], could
enhance the model's capabilities. By providing rapid, standard-
ized interpretation of multimer patterns, it could enhance both
the efficiency and accuracy of VWD evaluation. Further refine-
ment and validation of this technique may help to make VWF
multimer analysis more widely available as a diagnostic tool
for VWD.
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