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ABSTRACT
Introduction: Von Willebrand factor (VWF) multimer analysis is essential for diagnosing and classifying von Willebrand dis-
ease (VWD) but requires expert interpretation and is subject to inter-rater variability. We developed an automated image analysis 
pipeline using deep learning to improve the reproducibility and efficiency of VWF multimer pattern classification.
Methods: We trained a YOLOv8 deep learning model on 514 gel images (6168 labeled instances) to classify VWF multimer pat-
terns into 12 classes. The model was validated on 192 images (2304 instances) and tested on an independent set of 94 images (1128 
instances). Images underwent preprocessing, including histogram equalization, contrast enhancement, and gamma correction. 
Two expert raters provided ground truth classifications.
Results: The model achieved 91% accuracy compared to Expert 1 (macro-averaged precision = 0.851, recall = 0.757, F1-
score = 0.786) and 87% accuracy compared to Expert 2 (macro-averaged precision = 0.653, recall = 0.653, F1-score = 0.641). Inter-
rater agreement was very high between experts (κ = 0.883), with strong agreement between the model and Expert 1 (κ = 0.845) 
and good agreement with Expert 2 (κ = 0.773). The model performed exceptionally well on common patterns (F1 > 0.93) but 
showed lower performance on rare subtypes.
Conclusion: Automated VWF multimer analysis using deep learning demonstrates high accuracy in pattern classification and 
could standardize the interpretation of VWF multimer patterns. While not replacing expert analysis, this approach could im-
prove the efficiency of expert human review, potentially streamlining laboratory workflow and expanding access to VWF mul-
timer testing.

1   |   Introduction

Von Willebrand factor (VWF) is a large multimeric glyco-
protein with essential roles in primary hemostasis [1]. VWF 
is synthesized by endothelial cells and megakaryocytes 

as ultra-large molecular weight multimers and is cleaved 
by the plasma protease ADAMTS13 into low, intermediate, 
and high molecular weight multimers [2, 3]. A normal in-
dividual has a uniform distribution of all three sizes in the 
plasma [4].
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VWF multimer analysis is essential in the diagnosis of both 
congenital von Willebrand disease (VWD) and acquired von 
Willebrand syndrome (AVWS), which can both present with 
mucocutaneous bleeding [5, 6]. VWF multimer analysis by ei-
ther manual or semi-automated electrophoresis and immuno-
blotting can aid in discriminating among type 1, type 2, and 
type 3 VWD, as well as among subtypes of type 2 VWD [7, 8].

Despite diverse methodologies, VWF multimer analysis gener-
ally consists of five steps: (1) electrophoresis of a sample in an 
agarose gel, (2) in-gel fixation or transfer of the electrophoretic 
protein product to a membrane, (3) immunodetection of the pro-
tein using a labeled anti-VWF antibody, (4) visualization of the 
VWF multimer bands in the gel or membrane, and (5) interpre-
tation or quantification of the VWF multimer bands [9, 10].

Unfortunately, due to the high level of expertise required, long 
manual analysis time, and high complexity, VWF multimer 
analysis has historically only been performed in coagulation 
reference laboratories [11]. There is substantial inter-rater vari-
ability in the interpretation of some VWF multimer patterns, 
especially the subtle loss of high molecular weight multimers in 
some cases of AVWS [12]. For this reason, current laboratory 
workflows often require the evaluation of all multimer gel lanes 
by two experts [13, 14].

Computer vision methods have the potential to improve the re-
producibility of VWF multimer gel interpretation and improve 
efficiency and turnaround times in the clinical laboratory [15]. 
In this study, we developed an automated image analysis pipe-
line to detect and classify sample and normal control lanes in 
electrophoresis gel images.

2   |   Methods

Our laboratory utilizes a multi-day protocol for von Willebrand 
Factor (VWF) multimer analysis using a 2% agarose separating 
gel. Gel images are captured on the Odyssey infrared imaging 
system (LI-COR Biotech, Lincoln, NE, USA). Our protocol has 
been optimized through validation studies to handle samples 
across the VWF antigen range without requiring pre-dilution 
normalization. A validation study specifically examining sam-
ples with elevated VWF:Ag levels showed no additional value 
in pre-diluting samples with the 2% SDS sample prep buffer. For 
standard samples, we use 10 μL sample with 5 μL bromophenol 
blue and 85 μL buffer, and for low VWF:Ag samples (< 30%), we 
use 20 μL sample with 5 μL bromophenol blue and 75 μL buffer. 
Post-electrophoresis, our methodology allows for adjustment 
of brightness and contrast in gel images to optimize band vi-
sualization across the range of VWF concentrations. Each gel 
image typically contains 10 patient sample lanes and two nor-
mal control lanes (positions 3 and 9); occasionally, one or more 
lanes may be left blank or empty. The normal control consists of 
pooled plasma from normal donors, prepared from our standard 
citrated plasma aliquots that are frozen at −70 °C shortly after 
processing. To ensure consistency and stability, we evaluate and 
establish a new normal pool every 18 months. This standardized 
approach to control material preparation and pooling  mini-
mizes potential variability that could affect the algorithm's per-
formance across different control lots.

The YOLOv8 model was chosen for its state-of-the-art perfor-
mance in object detection and instance segmentation tasks [16]. 
The model was trained to classify patient sample lanes into 
one of 12 classes or patterns and to identify the normal control 
lanes and whether the controls were acceptable or unacceptable 
(failed). The training set comprised 514 gel images, containing 
a total of 6168 labeled instances across 12 classes (Table 1). The 
validation set consisted of 192 gel images, containing 2304 la-
beled instances across 12 classes (Table  1). Training and vali-
dation gel images were collected from 2021–2022 and 2024; a 
subset of 120 images was hand-selected to include atypical mul-
timer patterns to improve class balance. The independent test 
set of 94 images with 1128 instances was hand-selected from 
2023 to include at least one abnormal pattern on each gel image. 
The date range for the training, validation, and test sets spanned 
multiple lots of critical reagents (i.e., agarose, primary and sec-
ondary antibodies and normal control) used in the analytical 
method (Table S1). The original classifications of the gel images 
reported by the laboratory (called Expert 2) were verified or cor-
rected by another expert (called Expert 1) to establish ground 
truth for model training. Expert 2 represented one of up to 10 
coagulation consultants reviewing VWF multimer gels for clin-
ical cases, such that the same expert did not adjudicate all gel 
images. Performance in the test dataset was evaluated against 
Expert 1 “ground truth” and also against the Expert 2 clinically 
reported classifications. Examples of multimer patterns are 
shown in Figure 1.

The original gel images were 443 × 709 pixels in size and stored 
as 16-bit grayscale TIFF files. To prepare these images for model 
training, we developed a custom preprocessing pipeline. This 
pipeline included several enhancement steps to improve image 
quality and contrast. First, we applied histogram equalization to 
normalize the intensity distribution across the image. This was 
followed by Contrast Limited Adaptive Histogram Equalization 
(CLAHE) with a clip limit of 50.0 and a tile grid size of 5 × 5, 
which helped to enhance local contrast. We then applied gamma 
correction with a gamma value of 0.7 to adjust image bright-
ness. Finally, the images were converted from 16-bit to 8-bit 
depth, scaling the pixel intensities appropriately. This conver-
sion was necessary to make the images compatible with the 
YOLOv8 model input requirements and to replicate the image 
characteristics used by trained experts when visually analyzing 
gel patterns. The preprocessing steps were implemented using 
OpenCV and applied to all images in the training, validation, 
and testing sets.

Training was performed for 500 epochs using a batch size of 
36 and an image size of 736 × 736 pixels. The YOLO model was 
trained using a set of hyperparameters optimized for the specific 
task. The learning rate started at 0.00381 and decreased by a 
learning rate factor of 0.00497 using cosine annealing. A mo-
mentum of 0.86125 was applied with a weight decay of 0.00042. 
The model used a warm-up period of 4.03571 epochs with a 
warm-up momentum of 0.46311. Loss coefficients were set to 
7.30202 for bounding box regression, 0.61146 for classification, 
and 1.5547 for distribution focal loss. Data augmentation tech-
niques included subtle color adjustments (HSV shifts), scaling 
(up to 29.048%), horizontal flipping (28.949% probability), and 
mosaic augmentation (77.523% probability). No vertical flipping, 
shearing, or perspective transformations were applied. These 
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parameters were carefully tuned to balance model performance 
and generalization for the VWF multimer classification task. 
The model was trained on an NVIDIA A100-SXM4-40GB GPU.

Model performance was evaluated using the class-specific and 
macro-averaged precision, recall, and F1 metrics. Briefly, class-
specific scores measure these metrics for each class in a clas-
sification task—precision (positive predictive value) shows the 
proportion of correct positive predictions out of all positive pre-
dictions for that class, while recall (sensitivity) shows the pro-
portion of actual positive cases that were correctly identified for 
that class. The F1 score is the harmonic mean of precision and 
recall, which means it heavily penalizes cases where either pre-
cision or recall is very low, ensuring that a good F1 score reflects 
balanced performance on both metrics. The macro-averaged 
value is calculated by first computing the metric for each class 
individually and then taking the arithmetic mean across all 
classes. This approach is particularly useful when class imbal-
ance exists in the dataset, as it gives equal weight to minority 
and majority classes, preventing the overall performance as-
sessment from being dominated by the more frequent classes. 
However, this equal weighting means macro-averaging may not 
reflect performance on the raw distribution of classes in real-
world applications where class frequencies differ significantly.

A Python-based web application was developed to automatically 
process machine-generated outputs using the deep learning 
model and visualize the results for expert review and approval. 
Built with Dash Open Source, a Python framework commonly 

used in data science and machine learning, the application al-
lows users to upload batch outputs for automated analysis. After 
processing, the results are stored in a local database for future 
analysis, and both the gel images and the model's outputs are vi-
sualized for expert review. The application also enables review-
ers to manually override the model's inference with their own 
classification, which is stored in the database to inform potential 
future model optimizations.

3   |   Results

The model's learning progress in the training and validation 
sets, as well as the Precision-Recall curves and confusion matrix 
for the validation set, are shown in the Supporting Information 
(Figures  S1, S2 and S3). In the test image set, the deep learn-
ing model demonstrated high performance in classifying VWF 
multimer patterns and identified all but one lane in the 94 test 
images. When compared to Expert 1, the model achieved an 
overall accuracy of 91%, with macro-averaged precision, recall, 
and F1-score of 0.851, 0.757, and 0.786, respectively (Table  2). 
Performance against Expert 2 was slightly lower, with an overall 
accuracy of 87% and macro-averaged precision, recall, and F1-
score of 0.653, 0.653, and 0.641, respectively (Table 2).

Inter-rater agreement was assessed using Cohen's Kappa co-
efficient. The agreement between Expert 1 and Expert 2 was 
very high (κ = 0.883). The model showed strong agreement 
with Expert 1 (κ = 0.845) and good agreement with Expert 2 

TABLE 1    |    Class distribution in labeled training and validation sets.

Class Training set Training % Validation set Validation % Test set Test %

1A (Normal distribution) 3916 63.5% 1436 62.3% 681 60.4%

NORMAL CTRL (Normal Control 
Passed)

987 16.0% 363 15.8% 185 16.4%

2H (Acquired loss of highest MWM) 537 8.7% 233 10.1% 78 6.9%

CMA (Suboptimal resolution–repeat) 298 4.8% 134 5.8% 37 3.3%

2B (Loss of high and intermediate 
MWM)

143 2.3% 34 1.5% 42 3.7%

2D (Loss of high MWM) 77 1.2% 19 0.8% 20 1.8%

3B (Absence of low, intermediate and 
high MWM)

65 1.1% 25 1.1% 37 3.3%

4A (Presence of ultra-large MWM) 61 1.0% 23 1.0% 19 1.7%

CTRL FAILED (Normal Control 
Failed)

41 0.7% 21 0.9% 3 0.3%

6D (Interfering substance – cannot 
interpret)

23 0.4% 14 0.6% 10 0.9%

1F (Abnormal triplet band 
infrastructure)

12 0.2% 2 0.1% 12 1.1%

BLANK (No sample loaded in lane) 8 0.1% 0 0% 4 0.4%

Total 6168 100% 2304 100% 1128 100%

Abbreviation: MWM, molecular weight multimers.
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(κ = 0.773). To assess the significance of differences in classifi-
cation between the model and experts, a Cochran's Q test was 
performed for each class (Table  S2). Significant differences 
(p < 0.05) were observed for classes 1A, 1F, 2D, and CMA, indi-
cating areas where the model's performance differed from the 
experts.

The model performed exceptionally well on the most common 
classes, such as 1A and NORMAL CTRL, with F1-scores above 0.93 
for both experts. However, performance was lower for some less 
common classes, particularly 1F, 2D, and CMA. As shown in the 
confusion matrices in the Figures S4 and S5, and the Sankey dia-
gram in Figure 2 demonstrating how discrepancies were allocated 

FIGURE 1    |    Enhanced gel images showing Normal control lanes in positions 3 and 9 (NORMAL CTRL), failed control lanes (CTRL FAILED), 
normal VWF multimer distribution (1A), abnormal triplet band infrastructure (1F), loss of high and intermediate MWM (2B), acquired loss of high-
est MWM (2H), loss of high MWM (2D), absent or barely detectable low, intermediate and high MWM (3B), presence of ultra-large MWM (4A), in-
terfering substance—cannot interpret (6D), suboptimal resolution (CMA).
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TABLE 2    |    Class-specific and macro-averaged performance metrics of the deep learning model by VWF multimer pattern class, compared to two 
expert raters.

Class

vs Expert 1 vs Expert 2

Precision Recall F1-score Precision Recall F1-score

1A 0.930 0.974 0.951 0.926 0.947 0.936

1F 0.800 0.333 0.471 0.400 0.222 0.286

2B 0.857 0.857 0.857 0.833 0.700 0.761

2D 0.545 0.300 0.387 0.273 0.333 0.300

2H 0.714 0.705 0.710 0.519 0.597 0.556

3B 0.805 0.892 0.846 0.707 0.879 0.784

4A 0.875 0.737 0.800 0.688 0.786 0.733

6D 1.000 0.800 0.889 1.000 0.727 0.842

BLANK 0.800 1.000 0.889 0.800 1.000 0.889

CMA 0.905 0.514 0.655 0.381 0.174 0.239

CTRL FAILED 1.000 1.000 1.000 0.333 0.500 0.400

NORMAL CTRL 0.978 0.978 0.978 0.973 0.968 0.970

Macro-averaged metrics 0.851 0.757 0.786 0.653 0.653 0.641

Note: 1A (Normal distribution), NORMAL CTRL (Normal Control Passed), 2H (Acquired loss of highest MWM), CMA (Suboptimal resolution – repeat), 2B (Loss 
of high and intermediate MWM), 2D (Loss of high MWM), 3B (Absence of low, intermediate and high MWM), 4A (Presence of ultra-large MWM), CTRL FAILED 
(Normal Control Failed), 6D (Interfering substance—cannot interpret), 1F (Abnormal triplet band infrastructure), BLANK (No sample loaded in lane).

FIGURE 2    |    The Sankey diagram visualizes the discrepancies between ground truth classifications (on the left) and model Inferences (on the 
right) for the test image set. Each label represents a unique VWF multimer pattern class, with the number of occurrences of misclassifications shown 
in parentheses. Arrows represent transitions between ground truth and model classifications, with the thickness of the arrows corresponding to the 
frequency of each discrepancy. Arrows are color-coded based on the type of discrepancy: Blue for Minor discrepancies and red for Major discrep-
ancies as assessed by Expert 1. 1A (Normal distribution), NORMAL CTRL (Normal Control Passed), 2H (Acquired loss of highest MWM), CMA 
(Suboptimal resolution—repeat), 2B (Loss of high and intermediate MWM), 2D (Loss of high MWM), 3B (Absence of low, intermediate and high 
MWM), 4A (Presence of ultra-large MWM), CTRL FAILED (Normal Control Failed), 6D (Interfering substance—cannot interpret), 1F (Abnormal 
triplet band infrastructure), BLANK (No sample loaded in lane).
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between Expert 1 and the model inferences, there was class con-
fusion between 2H versus 2D versus 2B and between CMA ver-
sus 1A versus 2H. The distribution of classes in the test image set 
for gel positions 1 through 12, excluding the normal control lanes 
(positions 3 and 9) was relatively balanced (Figure S6). Examples 
of model inferences on test images are shown in Figure 3 and a 
screenshot of the Dash web application is shown in the Figure S7.

4   |   Discussion

This study demonstrates that automated von Willebrand factor 
(VWF) multimer image analysis using deep learning techniques 
can improve the diagnosis and classification of von Willebrand 
disease (VWD). The high performance of the YOLOv8 model in 
classifying VWF multimer patterns, with overall accuracies of 

FIGURE 3    |    Enhanced gel images showing model inferences in colored boxes for normal control lanes in positions 3 and 9 (NORMAL CTRL), 
failed control lanes (CTRL FAILED), normal VWF multimer distribution (1A), acquired loss of highest MWM (2H), loss of high MWM (2D), loss 
of high and intermediate MWM (2B), absence of low, intermediate and high MWM (3B), suboptimal resolution (CMA), interfering substances (6D), 
abnormal triplet band infrastructure (1F). Discordances between the model inferences and ground truth classifications are shown in red font beside 
the corresponding lane; 5 of the 72 lanes in these example images were misclassified by the model.

 1751553x, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ijlh.14455 by M

ayo C
linic L

ibraries, W
iley O

nline L
ibrary on [28/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



736 International Journal of Laboratory Hematology, 2025

91% and 87% compared to two expert raters, indicates the poten-
tial of this approach to standardize and expedite VWF multimer 
interpretation.

VWF multimer analysis plays a critical role in diagnosing and 
classifying both congenital VWD and acquired von Willebrand 
syndrome (AVWS) [5]. As noted by Saadalla et al., VWF mul-
timer patterns can provide key insights into the underlying 
pathologic mechanisms related to VWF dimerization, multi-
merization, secretion, and proteolysis that result in different 
VWD subtypes [14]. However, traditional human interpretation 
of multimer patterns requires expert training and is complex, 
time-consuming, and subject to inter-rater variability, especially 
for subtle abnormalities [13].

The automated deep learning approach described here addresses 
many of the limitations of manual analysis. By providing rapid, 
objective classification of multimer patterns, it could improve 
the efficiency and reproducibility of VWD diagnosis. The model 
showed particularly high performance for common patterns 
like type 1 VWD and normal controls. Its ability to detect subtle 
loss of high molecular weight multimers in AVWS is promising, 
as this can be challenging even for expert raters [12]. The mod-
el's performance in identifying poor resolution lanes for repeat 
analysis and artifacts due to monoclonal immunoglobulins is 
also reassuring.

The lower performance for some rare subtypes like type 1F and 
2D VWD likely reflects their limited representation in the train-
ing dataset. These rare variants have distinct multimer patterns 
that require careful evaluation [14]. Expanding the training set 
to include more examples of these uncommon subtypes could 
further improve the model's diagnostic capabilities. The confu-
sion between closely related patterns like 2D versus 2B VWD 
reflects the overlapping features of these subtypes, which can 
be challenging to distinguish for human experts [17]. Additional 
clinical and laboratory data may be needed to definitively clas-
sify these cases.

This automated approach to VWF multimer classification 
should be viewed as a complement to, rather than a replacement 
for, expert analysis. The implementation of this AI-driven work-
flow aims to reduce manual effort while maintaining diagnostic 
accuracy through strategic expert oversight. This could stream-
line workflow in coagulation laboratories and potentially enable 
wider access to VWF multimer testing. VWF multimer inter-
pretation also requires integration with other clinical and lab-
oratory findings [14]. While Figure 2 reveals several instances 
where the model classified abnormal patterns as normal (1A), 
many of these discrepancies would be caught by existing lab-
oratory safeguards. For example, abnormal VWF activity/anti-
gen ratios (< 0.7) would trigger expert review regardless of the 
automated classification, which is particularly important for 
catching misclassifications of types 2B, 2D, and subtle 2H pat-
terns. Some apparent discrepancies, such as CMA to 1A tran-
sitions, may actually represent cases where automated analysis 
outperformed initial human interpretation, potentially reduc-
ing unnecessary repeat testing. Other discrepancies, like those 
involving type 1F or 3B patterns, reflect either known chal-
lenges in pattern recognition that affect expert raters as well, 
or differences in describing intensity rather than true pattern 

misclassifications. Based on these findings, successful clinical 
implementation would require integration with other laboratory 
parameters, maintenance of human oversight in the workflow, 
and careful monitoring of discrepancy rates during the initial 
rollout and periodically thereafter.

Automated VWF multimer analysis using computer vision 
shows considerable promise for improving the classification of 
VWF multimer patterns. Further validation on larger image 
sets will be important to ensure the model's generalizability. 
Integration with other VWD diagnostic tests and clinical data 
could create a more comprehensive automated classification 
system. Additionally, the ability to quantify multimer band den-
sity, as described for some semi-automated systems [15], could 
enhance the model's capabilities. By providing rapid, standard-
ized interpretation of multimer patterns, it could enhance both 
the efficiency and accuracy of VWD evaluation. Further refine-
ment and validation of this technique may help to make VWF 
multimer analysis more widely available as a diagnostic tool 
for VWD.
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