

Journal Pre-proof

Etranacogene dezaparvovec in participants with hemophilia B and without adeno-associated virus serotype 5 neutralizing antibodies: A 4-year subgroup analysis (HOPE-B)

Priyanka Raheja, Niamh O'Connell, Peter Verhamme, Peter Kampmann, Richard S. Lemons, Fei Wang, Sean Gill, Paul E. Monahan, Sandra Le Quellec, Frank W.G. Leebeek

PII: S2475-0379(25)00645-4

DOI: <https://doi.org/10.1016/j.rpth.2025.103321>

Reference: RPTH 103321

To appear in: *Research and Practice in Thrombosis and Haemostasis*

Received Date: 31 August 2025

Revised Date: 26 November 2025

Accepted Date: 23 December 2025

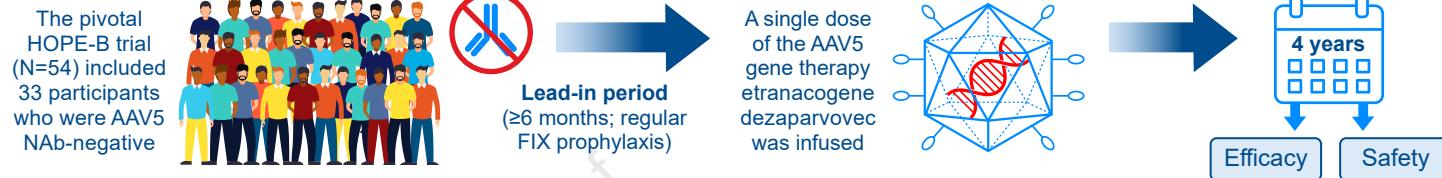
Please cite this article as: Raheja P, O'Connell N, Verhamme P, Kampmann P, Lemons RS, Wang F, Gill S, Monahan PE, Le Quellec S, Leebeek FWG, Etranacogene dezaparvovec in participants with hemophilia B and without adeno-associated virus serotype 5 neutralizing antibodies: A 4-year subgroup analysis (HOPE-B), *Research and Practice in Thrombosis and Haemostasis* (2026), doi: <https://doi.org/10.1016/j.rpth.2025.103321>.

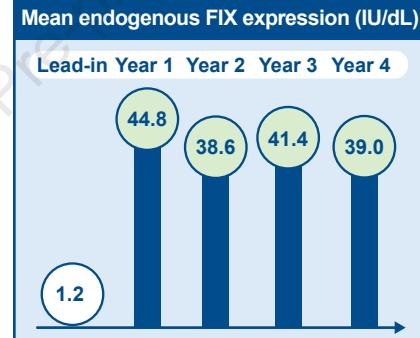
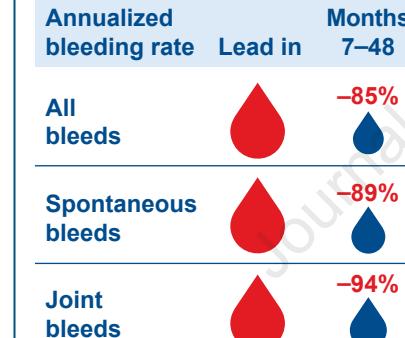
This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Inc. on behalf of International Society on Thrombosis and Haemostasis.

Etranacogene dezaparvovec in participants with hemophilia B and without adeno-associated virus serotype 5 neutralizing antibodies: A 4-year subgroup analysis (HOPE-B)

Treatment for hemophilia B has until recently been lifelong regular infusions of factor replacement therapies, which is burdensome for patients


Gene therapy offers the potential of a single-dose treatment for long-term disease correction of hemophilia B



How does a subgroup of participants with no AAV5 NAbs respond to etranacogene dezaparvovec for hemophilia B?

Assessing outcomes post-etrancogene dezaparvovec in participants with hemophilia B and who are AAV5 NAb-negative

4-year post-hoc subgroup analysis results

	Year 1	Years 2–4
Treatment-related AEs (n)	56	0
Treatment-related serious AEs (n)	0	0

Participants with severe or moderately severe hemophilia B who were NAb-negative experienced substantial benefits over 4 years of follow-up after a single infusion of etranacogene dezaparvovec

Etranacogene dezaparvovec in participants with hemophilia B and without adeno-associated virus serotype 5 neutralizing antibodies: A 4-year subgroup analysis of HOPE-B

Raheja et al. 2025 | Research and Practice in Thrombosis and Haemostasis

1 **Etranacogene dezaparvovec in participants with hemophilia B and without adeno-**
2 **associated virus serotype 5 neutralizing antibodies: A 4-year subgroup analysis**
3 **(HOPE-B)**

4

5 **Authors:** Priyanka Raheja^{*1}, Niamh O'Connell², Peter Verhamme³, Peter Kampmann⁴,
6 Richard S. Lemons⁵, Fei Wang⁶, Sean Gill⁶, Paul E. Monahan⁶, Sandra Le Quellec⁶, Frank
7 W.G. Leebeek⁷

8 **Affiliations**

9 ¹The Royal London Hospital Haemophilia Centre, Barts Health NHS Trust, London, UK

10 ²National Coagulation Centre, St James's Hospital, Dublin, Ireland

11 ³University Hospitals Leuven, Leuven, Belgium

12 ⁴Rigshospitalet, Copenhagen, Denmark

13 ⁵University of Utah, Salt Lake City, UT, USA

14 ⁶CSL Behring, King of Prussia, PA, USA

15 ⁷Department of Haematology, Erasmus University Medical Center-Erasmus MC,
16 Rotterdam, Netherlands.

17 *Corresponding author

18 Priyanka Raheja

19 Postal address: Haemophilia Centre, The Royal London Hospital, Barts Health NHS Trust,
20 Whitechapel Road, London E1 1FR, UK

21 Email address: priyanka.raheja@nhs.net

22 Ph. +44 02035941869

23

24 Original article word count: 3523 (limit: 5000)

25 **Social media post**

26 Focus on patients without AAV5 neutralizing antibodies from the HOPE-B trial reveals lasting
27 bleeding reduction, stable near-normal FIX activity, and 100% freedom from FIX prophylaxis over 4
28 years posttreatment with etranacogene dezaparvovec.

29

30 #AAV #genetherapy; #hemophilia #hemophiliaB; #etranacogenedezaparvovec; #HOPE-B;
31 #neutralizing antibody-negative

32

33 **Abstract**34 **Background**

35 In the phase 3 HOPE-B trial, a single dose of etranacogene dezaparvovec was administered
36 to participants with severe or moderately severe hemophilia B following a lead-in period (≥ 6
37 months) in which they received factor IX (FIX) prophylaxis. Participants were enrolled
38 regardless of adeno-associated virus serotype 5 (AAV5) neutralizing antibody (NAb) status
39 at screening.

40 **Objectives**

41 To determine efficacy, pharmacokinetic, and safety outcomes over 4 years post-gene
42 therapy in HOPE-B participants who were NAb-negative (NAb-).

43 **Methods**

44 Participants provided serum samples for AAV5 NAb determination using an in vitro AAV5
45 transduction inhibition assay prior to etranacogene dezaparvovec infusion. Participants who
46 were AAV5 NAb- at this time point were examined in this post hoc subgroup analysis.

47 **Results**

48 In NAb- participants (n=33), mean adjusted ABR was significantly reduced between Months
49 7–48 post-etranacogene dezaparvovec versus lead-in (0.57 vs 3.80; $p<0.0001$). At 1, 2, 3,
50 and 4 years, ABRs were 0.99, 0.72, 0.41, and 0.41, respectively ($p<0.0001$ versus lead-in;
51 n=33 throughout). Mean (standard deviation) endogenous FIX activity was 40.6 (18.6) IU/dL
52 at Month 6 post-infusion (n=33), remained stable, and was 39.0 (16.8) IU/dL at Year 4
53 (n=33). Exogenous FIX consumption decreased by 99% during Months 7–48 versus the
54 lead-in period, and no NAb- participant returned to continuous FIX prophylaxis over 4 years
55 post-infusion. No treatment-related oncogenic events or persistent late hepatotoxicity was
56 observed.

57 **Conclusions**

58 Etranacogene dezaparvovec proved highly effective, superior to FIX prophylaxis for bleeding
59 protection, and safe over 4 years post-infusion in NAb- participants with severe or
60 moderately severe hemophilia B (NCT03569891).

61 **Keywords:** Gene Therapy, Hemophilia B, Neutralizing Antibody, Adeno-Associated Virus,
62 Factor IX

63 **Essentials**

- 64 • HOPE-B tested etranacogene dezaparvovec in hemophilia B people with or without
65 vector antibodies
- 66 • This post-hoc study reports 4-year results post-gene therapy in antibody-negative
67 patients
- 68 • Etranacogene dezaparvovec was safe and reduced bleeding events, compared with
69 standard therapy
- 70 • Around half of patients produced stable FIX at the same level as people without
71 hemophilia

73 **Introduction**

74 Treatment for hemophilia B, an X-linked bleeding disorder resulting in deficient factor IX
75 (FIX) activity, commonly involves FIX protein replacement therapies. However, despite
76 advances associated with newer FIX products, the lifelong need for regular infusions is
77 burdensome for people with hemophilia B.[1] Infusion-related treatment burdens include time
78 taken to prepare and administer treatment, pain during and/or after injections, and the need
79 to store medication and supplies.[2] Such burdens may cause a delay in treatment, missed
80 infusions, or a complete stopping of prophylactic treatment, resulting in a deterioration in
81 health outcomes for people with hemophilia B.[3]

82 The recent development of gene therapy for hemophilia B offers the potential of a single-
83 dose infusion, resulting in durable FIX expression, substantial reduction of treatment burden,
84 and improved patient quality of life.[1, 4] The most common method used to deliver the FIX
85 coding sequence into cells utilizes the adeno-associated virus (AAV), a non-replicative
86 single-stranded DNA parvovirus. Adeno-associated viruses offer several advantages for *in*
87 *vivo* gene therapy, including the absence of known pathogenicity in humans. Wild-type
88 AAVs demonstrate preferential tropism for specific target organs, and typically persist as
89 episomal circular DNA within the nucleus of host cells, with low genomic DNA integration
90 rates.[5] However, when recombinant AAV vectors are utilized in clinical trials, the dosing
91 regimens may lead to higher absolute integration rates in targeted tissues, warranting careful
92 consideration and long-term monitoring.[6] Several AAV serotypes that vary in capsid amino
93 acid sequence homology and other features have been used in gene therapy.[1, 7-10] Wild-
94 type AAVs occur naturally in the environment, and therefore people who are exposed to a
95 wild-type AAV can develop neutralizing antibodies to the viral capsid[11-13] that are cross-
96 reactive with recombinant AAVs of the same or different serotypes; cross-neutralization has
97 the potential to inhibit transduction of the target tissue during gene therapy.[14]
98 Consequently, people with pre-existing AAV neutralizing antibodies have generally been
99 excluded from clinical trials of AAV-based gene therapies. For example, a phase 3 trial of a

100 gene therapy that utilized a recombinant AAV serotype rh74 capsid excluded participants
101 based on the presence of AAV rh74 neutralizing antibodies; of 316 men screened, 188
102 (60%) were ineligible to enter the trial on this basis.[15]

103 Etranacogene dezaparvovec is an AAV serotype 5 (AAV5)-based gene therapy with a
104 codon-optimized gene expression cassette encoding the naturally occurring human FIX
105 Padua (R338L) variant.[16, 17] The primary analysis of the pivotal phase 3 HOPE-B trial
106 (ClinicalTrials.gov identifier: NCT03569891) of etranacogene dezaparvovec (CSL222,
107 HEMGENIX®) demonstrated significantly improved bleeding outcomes in participants with
108 hemophilia B (FIX ≤2 IU/dL) who had previously been receiving standard-of-care continuous
109 FIX prophylaxis.[16, 17] Data from the previous phase 2b trial of etranacogene
110 dezaparvovec showed that FIX expression was maintained for at least 5 years in
111 participants.[18] In contrast to most AAV-based gene therapy clinical trials, HOPE-B enrolled
112 participants with and without AAV5 neutralizing antibodies.[17] However, few data on long-
113 term outcomes following gene therapy for hemophilia B in patients according to neutralizing
114 antibody status are available. In the post-hoc analysis of the HOPE-B study reported here,
115 long-term efficacy and tolerability outcomes were assessed in the subgroup of participants
116 without AAV5 neutralizing antibodies prior to etranacogene dezaparvovec infusion.

117 Screening determination of AAV5 neutralizing antibody status is available not only in the
118 clinical trial setting, but also for individuals with hemophilia B considering etranacogene
119 dezaparvovec therapy in the real-world setting. Importantly, individuals without AAV5
120 neutralizing antibodies constitute the majority, representing approximately 55–60% of the
121 global population.[11, 19, 20]

122 This post hoc analysis provides the longest-term follow-up to date from a phase 3 study of
123 systemically-delivered, liver-directed AAV-based gene therapy in hemophilia B. Focusing on
124 the most prevalent population, individuals without AAV5 neutralizing antibodies, these
125 results inform clinical decision-making for these specific individuals and facilitate more

126 accurate indirect comparisons with other gene therapy trials that restricted enrollment to
127 antibody-negative patients.

128

Journal Pre-proof

129 **Methods**130 ***Study participants***

131 The HOPE-B study enrolled adult males with severe (FIX activity <1 IU/dL) or moderately
132 severe (FIX activity between 1–≤2 IU/dL) hemophilia B. Participants were required to have
133 been receiving stable, continuous FIX prophylaxis for ≥2 months prior to screening, with the
134 specific dose and product determined by their physician. Informed consent was another
135 inclusion criterion. Following screening, participants then continued to receive their
136 continuous FIX prophylaxis regimen during the lead-in period of 6 months or longer. Key
137 exclusion criteria included a history of FIX inhibitors, active hepatitis B or C viral infection,
138 and known severe infection or another significant concurrent uncontrolled medical
139 condition. Neutralizing antibody positivity was not an exclusion criterion. Full eligibility
140 criteria have been reported previously.[17] Participants eligible for this post hoc analysis of
141 the HOPE-B study were AAV5 neutralizing antibody-negative on the day of dosing, prior to
142 etranacogene dezaparvovec infusion.

143 ***Study design***

144 HOPE-B was a phase 3, open-label, multinational study in which participants received a
145 single intravenous dose of etranacogene dezaparvovec at 2×10^{13} genome copies per kg
146 body weight and were planned to be followed for 5 years post-gene therapy. The trial was
147 conducted in accordance with the International Council for Harmonisation Good Clinical
148 Practice guidelines and the ethical principles stated in the Declaration of Helsinki. The
149 study protocol was approved by independent ethics committees and institutional review
150 boards at each study site.

151 The primary endpoint of HOPE-B was the annualized bleeding rate during a 52-week
152 period from Months 7–18 post-gene therapy. Secondary endpoints included endogenous
153 FIX activity (measured by a one-stage assay) at 26 and 52 weeks after steady-state FIX
154 activity was reached as well as factor replacement use, frequency and severity of adverse

155 events, and reactive use of corticosteroids. We report here a post-hoc subgroup analysis of
156 efficacy, pharmacokinetic, and safety outcomes over 4 years in participants who were
157 neutralizing antibody-negative on the day of dosing prior to etranacogene dezaparvovec
158 infusion.

159 ***Analysis of adeno-associated virus neutralizing antibodies***

160 Serum samples for AAV5 neutralizing antibody determination were obtained from
161 participants during the screening period, lead-in period (at 8 weeks and 4 weeks prior to
162 etranacogene dezaparvovec infusion), and on the day of etranacogene dezaparvovec
163 infusion. A central laboratory assessed AAV5 neutralizing antibody levels (Precision for
164 Medicine, Frederick, USA). This cell-based neutralizing antibody assay assessed the
165 potential for participant serum to inhibit the *in vitro* transduction of mammalian cells by
166 AAV5 reporter vector expressing luciferase. Descriptions of antibody determination
167 methodology have been reported previously.[16, 17]

168 ***Molecular analysis to assess neoplasm transformation***

169 Molecular analyses were conducted for the detection of vector integration sites by
170 ProtaGene CGT GmbH (Heidelberg, Germany), independently from the sponsor, on DNA
171 samples extracted from neoplasm tissue and blood. A detailed description of the analyses
172 can be found in the **Supplementary materials**.

173 Briefly, DNA was extracted using the QIAamp DNA Mini Kit (Qiagen). A polymerase chain
174 reaction (PCR) with vector-specific primers (hFIXco_FW and hFIXco_RV) was performed on
175 10 ng DNA per sample with vector-containing plasmids as positive control. Whole genome
176 sequencing data were analyzed for the detection of integration sites (IS) and to perform
177 somatic variant calling.

178 ***Statistical analysis***

179 Demographic and baseline characteristics were summarized descriptively using sample
180 size (n), mean, standard deviation (SD), minimum, maximum, median, and interquartile

181 range (IQR) for continuous measurements, and frequency and percentages (%) for
182 categorical variables. Adjusted annualized bleeding rates and comparison of annualized
183 bleeding rates between lead-in and post-gene therapy period are estimated from a
184 repeated-measures regression model with a negative binomial distribution and using
185 generalized estimating equations, with an offset term accounting for the paired design and
186 the differential collection periods. One-stage activated partial thromboplastin time-based
187 (SynthaSIL®) FIX activity measurements (expressed as IU/dL) from the central laboratory
188 were summarized descriptively. Post-gene therapy FIX samples were considered
189 contaminated and were excluded from the analysis if drawn within 5 half-lives of FIX
190 concentrate administration, on the basis of the reported half-life of each product.
191 Annualized FIX consumption, excluding FIX replacement for invasive procedures, was
192 computed for each period by dividing the total consumption by the time under observation
193 (in years) and compared between the post-gene therapy and lead-in phase using a two-
194 sided paired t test (using the pair of values from each participant). The analyses reported
195 here describe a retrospective post-hoc examination of data collected prospectively during
196 the lead-in phase and 4 years of follow-up for all participants treated in the HOPE-B phase
197 3 trial which was not specifically powered to detect significant differences or associations.
198 All analyses were performed in SAS 9.4; figures were generated using GraphPad®.

199 ***Data availability statement***

200 Individual participant data will not be shared. CSL Behring can provide scientific researchers
201 access to deidentified participant data collected in clinical trials to improve participant care to
202 support the advancement of medical science. Any data requests should be sent to this email
203 address: Office.CMO@cslbehring.com

204 **Results**205 **Participants**

206 The study began on June 27, 2018, and this 4-year post-hoc analysis includes data up to
 207 June 03, 2024. Overall, 33 of 54 participants in HOPE-B were AAV5 neutralizing antibody-
 208 negative on the day of dosing, prior to etranacogene dezaparvovec infusion. Baseline
 209 demographics for these participants are shown in **Table 1**. Most participants (85%) had a
 210 severe hemophilia B diagnosis (FIX <1 IU/dL) and around half (52%) had experienced a
 211 prior hepatitis C viral infection. All 33 participants completed 4 years of follow-up after
 212 etranacogene dezaparvovec infusion.

213 **Annualized bleeding rates**

214 In the neutralizing antibody-negative participants (n=33), the mean adjusted annualized
 215 bleeding rate (all bleeds) was reduced by 85% (two-sided Wald confidence interval [CI]:
 216 75–91; p<0.0001), from 3.80 during lead-in to 0.57 between Months 7–48 post-
 217 etranacogene dezaparvovec infusion (**Figure 1A**). Mean adjusted annualized bleeding
 218 rates for all bleeds at 1, 2, 3, and 4 years post-etrancogene dezaparvovec infusion were
 219 0.99, 0.72, 0.41, and 0.41, respectively (all p<0.0001 vs lead-in; n=33 at all time points;
 220 **Figure 1B**).

221 Compared with the lead-in period, the mean adjusted annualized bleeding rate for
 222 spontaneous bleeds was reduced by 89% (two-sided Wald 95% CI: 64–96; p<0.0001), from
 223 1.04 during lead-in to 0.12 over Months 7–48 (**Figure 1A**). Mean adjusted spontaneous
 224 annualized bleeding rates were 0.20, 0.06, 0.19 and 0.13 at Years 1, 2, 3, and 4 post-
 225 etranacogene dezaparvovec infusion, respectively (p<0.001, p<0.0001, p<0.01, and
 226 p<0.01, respectively, vs lead-in; **Figure 1B**).

227 Similarly, the mean adjusted ABR for joint bleeds was reduced by 94% (two-sided Wald
 228 95% CI: 88–97; p<0.0001), from 1.75 during lead-in to 0.10 during Months 7–48 (**Figure**
 229 **1A**). At Years 1, 2, 3, and 4, mean adjusted joint annualized bleeding rates were 0.20, 0.09,

230 0.09, and 0.06 post-etranacogene dezaparvovec infusion, respectively (all p<0.0001 vs
231 lead-in; **Figure 1B**).

232 These reductions in ABR and the associated p-values met the statistical thresholds for both
233 non-inferiority and superiority when compared with the lead-in standard-of-care treatment.

234 ***Endogenous factor IX activity***

235 All 33 participants who were neutralizing antibody-negative expressed endogenous
236 transgene-derived FIX post-gene therapy (**Figure 2**). Mean (SD) endogenous FIX activity
237 was 40.6 (18.6) IU/dL at Month 6 (n=33), remained stable over 4 years post-gene therapy,
238 and was 39.0 (16.8) IU/dL at Year 4 (n=33). Median (range) FIX activity at Year 4 was 35.7
239 (4.7–80.1) IU/dL.

240 ***Use of exogenous factor IX***

241 Over the 4-year time period reported here, no neutralizing antibody-negative participant
242 returned to continuous exogenous FIX prophylaxis following etranacogene dezaparvovec
243 infusion. In each year post-gene therapy, approximately 80% of neutralizing antibody-
244 negative participants did not require any exogenous FIX infusions (**Figure 3**). During the
245 lead-in period, bleeds requiring FIX treatment comprised 82% of total bleeds; post-gene
246 therapy, 37% of all bleeds over 4 years required exogenous FIX treatment. Exogenous FIX
247 consumption, excluding invasive procedures, decreased by 99%, from a mean (SD) of
248 264,888 (153,545) IU/year during the lead-in period to a mean (SD) of 1,878 (3337) IU/year
249 during Months 7–48 post-gene therapy (mean [standard error] reduction of 263,010 [26615]
250 IU/year; p<0.0001; n=33).

251 ***Safety***

252 Of 455 treatment-emergent adverse events reported in neutralizing antibody-negative
253 participants (**Figure 4**) during Years 1–4 post-etranacogene dezaparvovec infusion, 78%
254 were mild, 19% moderate, and 3% severe. Overall, 22 of 33 participants experienced
255 treatment-related adverse events during the first 3 months following etranacogene

256 dezaparvovec infusion; no treatment-related adverse events were reported from 3 to 42
257 months of follow up and one participant reported three treatment-related adverse events
258 during Months 43–48. The most frequent treatment-related adverse event was transient
259 alanine transaminase elevation in six (18%) participants (**Figure S1**). These elevations
260 occurred between 22 and 71 days post-etranacogene dezaparvovec infusion. The peak
261 alanine aminotransferase level for one participant was 2-fold the upper limit of normal, for
262 three participants, peak alanine aminotransferase elevations were between 1–2-fold the
263 upper limit of normal, while for two participants peak alanine aminotransferase elevations
264 were approximately 2-fold the value of the participants' pre-gene therapy baseline alanine
265 aminotransferase levels; however, these elevations remained within normal limits. Five out
266 of 6 participants with treatment-related alanine aminotransferase elevations and one
267 participant with non-treatment related alanine aminotransferase elevations received a
268 reactive course of corticosteroid treatment, with the mean (SD) total duration of
269 corticosteroid use for these participants being 79.5 (30.3) days. Time to receipt of
270 corticosteroid treatment following alanine aminotransferase elevation ranged from 0 to 21
271 days. Mean (SD) endogenous FIX activity at or near the time of corticosteroid initiation was
272 20.8 (10.3) IU/dL (n=6). Mean (SD) endogenous FIX activity remained stable over 4 years
273 post-gene therapy and was 20.5 (13.5) IU/dL (n=6) at Year 4. Median (range) FIX activity at
274 Year 4 was 18.5 (4.7–37.6) IU/dL (n=6) (**Figure S1**).

275 No persistent late hepatotoxicity was observed, including in participants who experienced
276 early liver inflammation and those with a history of chronic viral hepatitis. No serious adverse
277 events considered related to treatment, development of inhibitors, or thrombotic events were
278 reported. No oncogenic events considered related to treatment were reported. During Year
279 4, one serious adverse event of glossopharyngeal schwannoma was observed in one
280 neutralizing antibody-negative participant and explored by molecular analysis for vector
281 integration. No evidence of AAV5 vector DNA in tumor or control sample was detected using
282 polymerase chain (PCR), no integration events were identified in affected tissue using whole

283 genome sequencing, while premalignant signatures of somatic *NF2* defects consistent with
284 the development of a schwannoma were found; consequently, this serious adverse event
285 was considered unrelated to treatment. A detailed description of the patient narrative,
286 molecular analyses for the detection of integration site, and identification of relevant genetic
287 signatures and corresponding findings are provided in the Supplementary Materials,
288 including **Figure S2** and **Figure S3**.

289 **Discussion**

290 The present manuscript provides 4-year follow-up data from a phase 3 gene therapy trial,
291 representing the longest duration of post-treatment observation in such a setting to date,
292 supporting the sustained efficacy and durability of AAV-based gene therapy for hemophilia
293 B. Additionally, the post-hoc analysis includes detailed outcomes for the participants who
294 tested negative for AAV5 neutralizing antibodies prior to etranacogene dezaparvovec. This
295 subgroup not only represented the largest subset within the trial but also reflects the
296 expectation that most individuals with hemophilia B do not have pre-existing neutralizing
297 antibodies to AAV5, conversely to other AAV serotypes. [11, 19, 20]

298 Neutralizing antibody-negative participants demonstrated that they had stable endogenous
299 FIX activity over 4 years of follow-up post-gene therapy, accompanied by durable bleed
300 protection and limited treatment-related adverse events, with no treatment-related adverse
301 events reported after Month 3 post-gene therapy. While it has been previously reported that
302 2 participants with pre-existing AAV5 neutralizing antibodies did not express endogenous
303 transgene-derived FIX Padua protein following treatment with etranacogene
304 dezaparvovec,[16, 17] all treated neutralizing antibody-negative participants expressed
305 stable endogenous transgene-derived FIX throughout the 4-year analysis period, with the
306 median value of one-stage FIX activity levels at 4 years follow-up being 35.7 IU/dL; the
307 median value for the intent-to-treat population (N=54), ie. including neutralizing antibody-
308 positive participants, at 4 years was 34.6 IU/dL (data on file). Approximately half of the
309 neutralizing antibody-negative participants had endogenous FIX activity that was in the
310 non-hemophilia range. However, the response was variable, with endogenous FIX values
311 ranging from 4.7 through to 80.1 IU/dL at Year 4. The impact of early alanine
312 aminotransferase elevation on FIX expression was one important contributor to the
313 observed wide variation in response – three participants with alanine aminotransferase
314 elevations also had the lowest endogenous FIX values (<15 IU/dL) at Years 1, 2, 3, and 4.
315 Of note, these participants already had the lowest FIX expression prior to the occurrence of

316 alanine aminotransferase elevation. With the exception of these three individuals, all
317 neutralizing antibody-negative participants maintained >20 IU/dL FIX activity through
318 Months 7–48. Transient liver function abnormalities treated with corticosteroids during the
319 first 6 months after gene therapy were not associated with subsequent instability or
320 decreases in endogenous FIX activity during the months 7–48 follow-up; FIX expression
321 that was preserved at discontinuation of corticosteroids was in general maintained at stable
322 levels through the remainder of the follow-up period. Moreover, all endogenous FIX levels,
323 including the lower values, allowed discontinuation of continuous FIX prophylaxis in the first
324 weeks after gene therapy, and all neutralizing antibody-negative participants remained free
325 of continuous FIX prophylaxis during the 4-year analysis period.

326 Focusing exclusively on the subset of HOPE-B participants with undetectable pre-existing
327 AAV5 neutralizing antibodies is valuable, as it enables a meaningful indirect comparison
328 with other AAV-based gene therapy trials for both hemophilia A and hemophilia B. This is
329 because most of these trials [21] have excluded participants who were baseline AAV
330 antibody-positive to their respective AAV vectors, primarily due to concerns that AAV
331 neutralizing antibodies would prevent transduction of target cells.

332 Moreover, few studies have reported long-term pharmacokinetic and efficacy data for
333 hemophilia gene therapies. Long-term data are essential to determine the durability and
334 safety of this recently developed therapeutic modality, and to guide development of future
335 gene therapies. Long-term maintenance of therapeutic levels of endogenous factor VIII
336 expression has been challenging in trials of gene therapy for participants with hemophilia
337 A.[12, 22] In a 5-year analysis of the phase 3 factor VIII gene therapy GENEr8-1 trial of
338 valoctocogene roxaparvovec (N=134; all of whom were AAV5 immunoglobulin G- binding
339 antibody-negative pre-gene therapy) mean (standard error) chromogenic assay-assessed
340 endogenous factor VIII activity was 13.7 (2.1) IU/dL (mean one stage assay-assessed
341 factor VIII: 24.0 IU/dL) at Year 5; mean annualized bleeding rate for treated bleeds was 0.6
342 and 78% of patients had 0 bleeds during Year 5.[23] However, despite these relatively

343 positive outcomes, 19% of patients required re-initiation of factor VIII replacement treatment
344 within 5 years post-gene therapy.[22, 23]

345 Through use of the gain-of-function Padua FIX variant in hemophilia B gene therapy, long-
346 term stable expression of FIX at protective levels has been observed, although the extent of
347 protection appears to vary according to gene therapy.[15] Three- and five-year follow up
348 data from the initial phase 2b trial of etranacogene dezaparvovec (N=3; all participants
349 were neutralizing antibody-positive) also showed sustained endogenous factor IX activity
350 (36.9 and 45.7 IU/dL at Year 3 and 5 post-gene therapy, respectively), a significant
351 reduction in bleeding events and a significant decrease in requirement for exogenous FIX,
352 supporting the longer term therapeutic benefit of FIX Padua-based gene therapy.[24, 25]

353 The HOPE-B post-hoc analysis reported herein found a mean adjusted all-bleed annualized
354 bleeding rate for all bleeds of 0.57 between Months 7–48 post-etrancogene dezaparvovec
355 infusion and importantly, showing superior results compared to other vectors in late stage
356 development. Indeed, another phase 3 study (N=45) of hemophilia B gene therapy
357 fidanacogene elaparvovec, also utilizing FIX Padua, reported mean endogenous one-stage
358 FIX activity of 26.9 IU/dL at month 15 post-gene therapy in participants with hemophilia B,
359 all of whom were AAV neutralizing antibody-negative (for the AAVrh74 serotype used in
360 that trial).[15] This resulted in an annualized bleeding rate for all bleeds of 1.28 at Month 15
361 post-gene therapy. Although longer-term follow up of this trial is not available yet, it is
362 notable that already 6 out of 45 participants returned to continuous FIX prophylaxis within
363 fewer than 15 months after fidanacogene elaparvovec administration. In contrast, it is
364 remarkable that no neutralizing antibody-negative-participants returned to continuous FIX
365 prophylaxis over the 4-year period post-etrancogene dezaparvovec reported here. The
366 mechanisms underlying the observed superior outcomes observed with etranacogene
367 dezaparvovec in neutralizing antibody-negative participants compared to other AAV vectors
368 remain unknown. A range of factors, including capsid-specific immune responses,
369 transduction efficiency and dosing, vector genome attributes (such as CpG content),

370 manufacturing process, and the recipient's hepatic function and immunological profile, can
371 collectively influence both the durability and extent of transgene expression, as well as the
372 potential for related hepatotoxicity. Adverse events considered related to etranacogene
373 dezaparvovec, which was administered at a dose of 2×10^{13} genome copies per kg body
374 weight, occurred in 67% of neutralizing antibody-negative participants, all within the first 3
375 months after gene therapy administration. The most common treatment-related adverse
376 event was transiently increased alanine aminotransferase levels, occurring in 18% of
377 participants, which were successfully managed using corticosteroid therapy, with stable
378 endogenous FIX activity achieved and none of these participants requiring a return to
379 continuous exogenous FIX prophylaxis. However, due to potential effects on hepatocyte-
380 derived FIX Padua expression, as previously discussed, it is important to closely monitor
381 liver transaminases in the first few months after gene delivery. This allows for immediate
382 supportive care with corticosteroids to minimize impact on treatment efficacy.

383 In contrast, in BENEGENE-2, a phase 3 trial in which participants received a single dose of
384 fidanacogene elaparvovec of 5×10^{11} genome copies per kg body weight,[15] 24/45 (53%)
385 participants experienced increased transaminase levels. Of the six participants who
386 resumed continuous exogenous FIX prophylaxis due to low FIX activity, all had received at
387 least one course of glucocorticoids (2 of these participants received 2 courses of steroids
388 for increased transaminase levels). A recent phase 1 study (N=10) of BBM-H901, an AAV
389 vector expressing Padua FIX, reported 1 (10%) participant with treatment-related alanine
390 aminotransferase elevation which was associated with a decrease in FIX activity. In this
391 study, participants were excluded if they had a hepatitis B or C virus infection, alanine
392 aminotransferase levels higher than 2-fold the upper limit of normal or liver conditions such
393 as liver fibrosis stage ≥ 3 ; all participants received per-protocol prophylactic glucocorticoids
394 from day 7 prior to BBM-H901 infusion, and for approximately 7–9 weeks afterwards.[26]
395 This suggests that prophylactic corticosteroids neither fully prevent post-gene therapy
396 alanine aminotransferase elevations nor support long-term stability of FIX activity. Notably,

397 etranacogene dezaparvovec was associated with infrequent and mild alanine
398 aminotransferase elevations, all effectively managed with short, reactive corticosteroid
399 courses, and was not associated with decreases in FIX levels after support with
400 corticosteroids was initiated, underscoring that timely corticosteroid initiation at the first sign
401 of alanine aminotransferase elevation is essential for maintaining stable FIX levels.

402 Regarding long-term safety, the case of the participant who developed a schwannoma was
403 comprehensively evaluated using molecular analyses, including tests for vector integration.
404 There was no evidence of vector DNA in the analyzed tissues, and no vector integration was
405 detected within schwannoma sample, so that vector involvement could be excluded. The
406 results were concordant with the established preferential hepatic tropism of the AAV5
407 serotype, and align with the low integration frequency characteristic of recombinant AAV
408 vectors as described in previous clinical reports.[27, 28] In more than two decades of clinical
409 use, AAV-based gene therapy for hemophilia has not resulted in any confirmed cases of
410 AAV-related cancer, despite concerns about potential insertional mutagenesis.[22] While
411 ongoing long-term follow-up studies continue to characterize the safety profile and address
412 any latent risks, current evidence increasingly supports the benign nature of AAV vector
413 integration in the clinical setting. However, an estimated 0.1–3% of liver-targeted
414 recombinant AAV vector may integrate into hepatocyte DNA, which potentially equates to
415 many million hepatic integration events at the dose of 2×10^{13} genome copies per kg
416 bodyweight. Therefore, continued monitoring with special focus on hepatic neoplasms,
417 including long-term registry follow ups, remains scientifically valuable, especially to reinforce
418 confidence in the safety of AAV-based therapies and guide evidence-based risk-benefit
419 assessments and post-marketing strategies.[29]

420 Limitations of this post-hoc subgroup analysis include the fact that it was not prespecified
421 and the relatively low participant numbers. However, given the low number of people with
422 hemophilia B in the general population, we believe that the insights into the efficacy and

423 safety of etranacogene dezaparvovec in neutralizing antibody-negative participants
424 generated by this analysis have high clinical value.

425 **Conclusions**

426 All participants with severe to moderately severe hemophilia B in the HOPE-B trial who
427 tested negative for AAV5 neutralizing antibodies prior to etranacogene dezaparvovec
428 infusion expressed endogenous FIX at therapeutic levels, and durable bleed protection was
429 achieved over a 4-year period, with no participants returning to continuous FIX prophylaxis
430 during this time frame. No treatment-related adverse events occurred after the first 3
431 months following gene therapy; importantly, no events of AAV5-associated genotoxicity and
432 no events of persistent late hepatotoxicity were observed. These data provide important
433 information that will allow physicians and individuals with hemophilia B considering
434 etranacogene dezaparvovec gene therapy to assess and understand potential outcomes,
435 allowing informed decision making.

436

437 **Acknowledgements**

438 The authors thank all patients and their families and caregivers for their contribution to the
439 study, together with all investigators and study team. This study was designed and funded
440 by CSL Behring. Medical writing assistance was provided by Andy Noble and Melody
441 Watson of Bioscript Group, Macclesfield, UK, in accordance with Good Publication Practice
442 guidelines, and funded by CSL Behring. In addition, the authors thank the Protagene
443 members Saira Afzal, Richard Gabriel, and Loubna Youssar for their valuable expertise,
444 input, and collaboration regarding the description of molecular analyses.

445

446 **Funding**

447 This study was designed and funded by CSL Behring.

448

449

450 **Relationship disclosures**

451 Priyanka Raheja: Grant/Research support from: CSL Behring, Sobi, and Takeda,
452 Consultant/speaker for: BioMarin, CSL Behring, Pfizer, Sobi, Takeda and LFB

453 Niamh O'Connell: Grant/Research support from: Sobi, Consultant for: AstraZeneca, CSL
454 Behring and Sobi, Speaker Bureau of: Bayer, CSL Behring, Takeda, Sobi and Sanofi

455 Peter Verhamme: Consultant for: CSL Behring, Roche, CAP-DCF, Bayer HealthCare,
456 LeoPharma, Boehringer Ingelheim, Daiichi Sankyo, Pfizer, Sanofi-Aventis, and
457 ThromboGenics.

458 Peter Kampmann: Consultant for: BioMarin, CSL Behring and Novo Nordisk AS, Speaker
459 Bureau of: CSL Behring.

460 Richard S. Lemons: Consultant for: CSL Behring and Novo Nordisk.

461 Fei Wang: Employee of CSL Behring.

462 Sean Gill: Employee of CSL Behring

463 Paul E. Monahan: Employee of CSL Behring.

464 Sandra Le Quellec: Employee of CSL Behring.

465 Frank W. G. Leebeek: Grant/Research support from: CSL Behring, Takeda, uniQure, Sobi,
466 Consultant for: CSL Behring, Takeda, uniQure, BioMarin, Roche: all fees go to the
467 university hospital.

468

469

470

471 **Author contributions**

472 Priyanka Raheja participated as a principal investigator and recruited and treated patients in
473 this clinical trial, and contributed to analysis and interpretation of the data, the drafting and
474 review of the content, the approval of the final draft, and agrees to be accountable for all
475 aspects of the work.

476 Niamh O'Connell participated as a principal investigator and recruited and treated patients in
477 this clinical trial and contributed to analysis and interpretation of the data, the drafting and
478 review of the content, the approval of the final draft, and agrees to be accountable for all
479 aspects of the work.

480 Peter Verhamme participated as a principal investigator and recruited and treated patients in
481 this clinical trial, and contributed to analysis and interpretation of the data, the drafting and
482 review of the content, the approval of the final draft, and agrees to be accountable for all
483 aspects of the work.

484 Peter Kampmann participated as a principal investigator and recruited and treated patients
485 in this clinical trial, and contributed to analysis and interpretation of the data, the drafting and
486 review of the content, the approval of the final draft, and agrees to be accountable for all
487 aspects of the work.

488 Richard S. Lemons participated as a principal investigator and recruited and treated patients
489 in this clinical trial, and contributed to analysis and interpretation of the data, the drafting and

490 review of the content, the approval of the final draft, and agrees to be accountable for all
491 aspects of the work.

492 Frank W. G. Leebeek participated as a principal investigator and recruited and treated
493 patients in this clinical trial contributed to the drafting and review of the content, the approval
494 of the final draft, and agrees to be accountable for all aspects of the work.

495 Fei Wang performed statistical analyses of the data and contributed to the drafting and
496 review of the content, the approval of the final draft, and agrees to be accountable for all
497 aspects of the work.

498 Sean Gill contributed to the analysis and interpretation of the data, the drafting and review of
499 the content, the approval of the final draft, and agrees to be accountable for all aspects of
500 the work.

501 Paul E. Monahan contributed to the conception and design of the research, the analysis and
502 interpretation of the data, the drafting and review of the content, the approval of the final
503 draft, and agrees to be accountable for all aspects of the work.

504 Sandra Le Quellec contributed to the conception and design of the research, the analysis
505 and interpretation of the data, the drafting and review of the content, the approval of the final
506 draft, and agrees to be accountable for all aspects of the work.

507

508

509

510

511 **References**

512 1 Pierce GF, Fong S, Long BR, Kaczmarek R. Deciphering conundrums of adeno-
 513 associated virus liver-directed gene therapy: focus on hemophilia. *J Thromb Haemost*.
 514 2024; **22**: 1263–89. 10.1016/j.jtha.2023.12.005.

515 2 Jiménez-Yuste V, Percier C, Shridhar N, Reynolds N, Rajkovic-Hooley O, Dewar T,
 516 Castaman G. Burden of Treatment on People with Hemophilia: Global Real-World Data.
 517 *Blood*. 2024; **144**: 5077–. 10.1182/blood-2024-200008.

518 3 Thornburg CD, Duncan NA. Treatment adherence in hemophilia. *Patient Prefer
 519 Adherence*. 2017; **11**: 1677–86. 10.2147/ppa.S139851.

520 4 Lewandowska M, Nasr S, Shapiro AD. Emerging Therapies in Hemophilia: Improving
 521 Equitable Access to Care. *J Blood Med*. 2025; **16**: 95–115. 10.2147/jbm.S490588.

522 5 Martins KM, Breton C, Zheng Q, Zhang Z, Latshaw C, Greig JA, Wilson JM. Prevalent
 523 and Disseminated Recombinant and Wild-Type Adeno-Associated Virus Integration in
 524 Macaques and Humans. *Hum Gene Ther*. 2023; **34**: 1081–94. 10.1089/hum.2023.134.

525 6 Miesbach W, Peyvandi F, Pierce GF. AAV Gene Therapy in Severe Hemophilia B. *N
 526 Engl J Med*. 2025; **393**: 829–30. 10.1056/NEJMc2509703.

527 7 Mendell JR, Connolly AM, Lehman KJ, Griffin DA, Khan SZ, Dharia SD, Quintana-
 528 Gallardo L, Rodino-Klapac LR. Testing preexisting antibodies prior to AAV gene transfer
 529 therapy: rationale, lessons and future considerations. *Mol Ther Methods Clin Dev*. 2022;
 530 **25**: 74–83. 10.1016/j.omtm.2022.02.011.

531 8 Bantel-Schaal U, Delius H, Schmidt R, zur Hausen H. Human adeno-associated virus
 532 type 5 is only distantly related to other known primate helper-dependent parvoviruses. *J
 533 Virol*. 1999; **73**: 939–47. 10.1128/JVI.73.2.939-947.1999.

534 9 Govindasamy L, DiMatta MA, Gurda BL, Halder S, McKenna R, Chiorini JA, Muzyczka
 535 N, Zolotukhin S, Agbandje-McKenna M. Structural insights into adeno-associated virus
 536 serotype 5. *J Virol*. 2013; **87**: 11187–99. 10.1128/JVI.00867-13.

537 10 Mietzsch M, Jose A, Chipman P, Bhattacharya N, Daneshparvar N, McKenna R,
 538 Agbandje-McKenna M. Completion of the AAV Structural Atlas: Serotype Capsid
 539 Structures Reveals Clade-Specific Features. *Viruses*. 2021; **13**. 10.3390/v13010101.

540 11 Klamroth R, Hayes G, Andreeva T, Gregg K, Suzuki T, Mitha IH, Hardesty B, Shima M,
 541 Pollock T, Slev P, Oldenburg J, Ozelo MC, Stieltjes N, Castet SM, Mahlangu J,
 542 Peyvandi F, Kazmi R, Schved JF, Leavitt AD, Callaghan M, Pan-Petesch B, Quon DV,
 543 Andrews J, Trinh A, Li M, Wong WY. Global Seroprevalence of Pre-existing Immunity
 544 Against AAV5 and Other AAV Serotypes in People with Hemophilia A. *Hum Gene Ther.*
 545 2022; **33**: 432–41. 10.1089/hum.2021.287.

546 12 Li C, Narkbunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ, Manco-Johnson MJ,
 547 Monahan PE. Neutralizing antibodies against adeno-associated virus examined
 548 prospectively in pediatric patients with hemophilia. *Gene Ther.* 2012; **19**: 288–94.
 549 10.1038/gt.2011.90.

550 13 Kruzik A, Fetahagic D, Hartlieb B, Dorn S, Koppensteiner H, Horling FM, Scheiflinger F,
 551 Reipert BM, de la Rosa M. Prevalence of Anti-Adeno-Associated Virus Immune
 552 Responses in International Cohorts of Healthy Donors. *Mol Ther Methods Clin Dev.*
 553 2019; **14**: 126–33. 10.1016/j.omtm.2019.05.014.

554 14 Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L, Figueiredo J, Lock M, Wilson JM.
 555 Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates.
 556 *Mol Ther.* 2006; **13**: 77–87. 10.1016/j.ymthe.2005.08.017.

557 15 Cuker A, Kavakli K, Frenzel L, Wang JD, Astermark J, Cerqueira MH, Iorio A, Katsarou-
 558 Fasouli O, Klamroth R, Shapiro AD, Hermans C, Ishiguro A, Leavitt AD, Oldenburg JB,
 559 Ozelo MC, Teitel J, Biondo F, Fang A, Fuiman J, McKay J, Sun P, Rasko JEJ, Rupon J,
 560 Investigators B-T. Gene Therapy with Fidanacogene Elaparvovec in Adults with
 561 Hemophilia B. *N Engl J Med.* 2024; **391**: 1108–18. 10.1056/NEJMoa2302982.

562 16 Coppens M, Pipe SW, Miesbach W, Astermark J, Recht M, van der Valk P, Ewenstein
 563 B, Pinachyan K, Galante N, Le Quellec S, Monahan PE, Leebeek FWG, Investigators H-
 564 B. Etranacogene dezaparvovec gene therapy for haemophilia B (HOPE-B): 24-month

565 post-hoc efficacy and safety data from a single-arm, multicentre, phase 3 trial. *Lancet*
 566 *Haematol.* 2024; **11**: e265–e75. 10.1016/S2352-3026(24)00006-1.

567 17 Pipe SW, Leebeek FWG, Recht M, Key NS, Castaman G, Miesbach W, Lattimore S,
 568 Peerlinck K, Van der Valk P, Coppens M, Kampmann P, Meijer K, O'Connell N, Pasi KJ,
 569 Hart DP, Kazmi R, Astermark J, Hermans C, Klamroth R, Lemons R, Visweshwar N,
 570 von Drygalski A, Young G, Crary SE, Escobar M, Gomez E, Kruse-Jarres R, Quon DV,
 571 Symington E, Wang M, Wheeler AP, Gut R, Liu YP, Dolmetsch RE, Cooper DL, Li Y,
 572 Goldstein B, Monahan PE. Gene Therapy with Etranacogene Dezaparvovec for
 573 Hemophilia B. *N Engl J Med.* 2023; **388**: 706–18. 10.1056/NEJMoa2211644.

574 18 von Drygalski A, Gomez E, Giermasz A, Castaman G, Key NS, Lattimore SU, Leebeek
 575 FWG, Miesbach WA, Recht M, Monahan PE, Le Quellec S, Pipe SW. Completion of
 576 phase 2b trial of etranacogene dezaparvovec gene therapy in patients with hemophilia B
 577 over 5 years. *Blood Adv.* 2025; **9**: 3543–52. 10.1182/bloodadvances.2024015291.

578 19 Klamroth R, Recht M, Key NS, Miesbach W, Pipe SW, Kaczmarek R, Drelich D, Salazar
 579 B, Le Quellec S, Monahan PE, Galante N, van der Valk P, Tarrant J. Natural history of
 580 preexisting AAV5 antibodies in adults with hemophilia B during the lead-in of the
 581 etranacogene dezaparvovec phase 3 study. *Molecular Therapy Methods & Clinical*
 582 *Development.* 2025; **33**: 101568. <https://doi.org/10.1016/j.omtm.2025.101568>.

583 20 Pabinger I, Ayash-Rashkovsky M, Escobar M, Konkle BA, Mingot-Castellano ME,
 584 Mullins ES, Negrier C, Pan L, Rajavel K, Yan B, Chapin J. Multicenter assessment and
 585 longitudinal study of the prevalence of antibodies and related adaptive immune
 586 responses to AAV in adult males with hemophilia. *Gene Ther.* 2024; **31**: 273–84.
 587 10.1038/s41434-024-00441-5.

588 21 Deshpande SR, Joseph K, Tong J, Chen Y, Pishko A, Cuker A. Adeno-associated virus-
 589 based gene therapy for hemophilia A and B: a systematic review and meta-analysis.
 590 *Blood Adv.* 2024; **8**: 5957–74. 10.1182/bloodadvances.2024014111.

591 22 Herzog RW, Kaczmarek R, High KA. Gene therapy for hemophilia – From basic science
 592 to first approvals of “one-and-done” therapies. *Molecular Therapy*. 2025; **33**: 2015–34.
 593 <https://doi.org/10.1016/j.ymthe.2025.03.043>.

594 23 Leavitt AD, Mahlangu J, Raheja P, Symington E, Quon DV, Giermasz A, Kenet G, Lowe
 595 G, Key NS, Millar CM, Pipe SW, Chou S-C, Klamroth R, Mason J, Chambost H,
 596 Peyvandi F, Majerus E, Pepperell D, Chavele KM, Ozelo MC, for the GENEr8-1 Trial
 597 Group. Final GENEr8-1 results confirm enduring efficacy, safety, and quality of life
 598 improvements 5 years after valoctocogene roxaparvovec gene transfer_PB0804. *33rd*
 599 *Congress of the International Society on Thrombosis and Haemostasis (ISTH)*.
 600 Washington DC, 2025, PB0804.

601 24 von Drygalski A, Gomez E, Giermasz A, Castaman G, Key NS, Lattimore SU, Leebeek
 602 FWG, Miesbach WA, Recht M, Gut R, Dolmetsch R, Monahan PE, Le Quellec S, Pipe
 603 SW. Stable and durable factor IX levels in patients with hemophilia B over 3 years after
 604 etranacogene dezaparvovec gene therapy. *Blood Advances*. 2023; **7**: 5671–9.
 605 [10.1182/bloodadvances.2022008886](https://doi.org/10.1182/bloodadvances.2022008886).

606 25 von Drygalski AM, Gomez E, Giermasz A, Castaman G, Key NS, Lattimore SU,
 607 Leebeek FWG, Miesbach WA, Recht M, Monahan PM, Le Quellec S Md P, Pipe SM.
 608 Completion of Phase 2b trial of etranacogene dezaparvovec gene therapy in patients
 609 with hemophilia B over 5 years. *Blood Adv*. 2025. [10.1182/bloodadvances.2024015291](https://doi.org/10.1182/bloodadvances.2024015291).

610 26 Xue F, Li H, Wu X, Liu W, Zhang F, Tang D, Chen Y, Wang W, Chi Y, Zheng J, Du Z,
 611 Jiang W, Zhong C, Wei J, Zhu P, Fu R, Liu X, Chen L, Pei X, Sun J, Cheng T, Yang R,
 612 Xiao X, Zhang L. Safety and activity of an engineered, liver-tropic adeno-associated
 613 virus vector expressing a hyperactive Padua factor IX administered with prophylactic
 614 glucocorticoids in patients with haemophilia B: a single-centre, single-arm, phase 1, pilot
 615 trial. *Lancet Haematol*. 2022; **9**: e504–e13. [10.1016/s2352-3026\(22\)00113-2](https://doi.org/10.1016/s2352-3026(22)00113-2).

616 27 Schmidt M, Foster GR, Coppens M, Thomsen H, Dolmetsch R, Heijink L, Monahan PE,
 617 Pipe SW. Molecular evaluation and vector integration analysis of HCC complicating AAV

618 gene therapy for hemophilia B. *Blood Advances*. 2023; **7**: 4966–9.

619 10.1182/bloodadvances.2023009876.

620 28 Reiss UM, Davidoff AM, Tuddenham EGD, Chowdary P, McIntosh J, Muczynski V,
621 Journou M, Simini G, Ireland L, Mohamed S, Riddell A, Pie AJ, Hall A, Quaglia A,
622 Mangles S, Mahlangu J, Haley K, Recht M, Shen YM, Halka KG, Fortner G, Morton CL,
623 Gu Z, Hayden RT, Neufeld EJ, Okhomina VI, Kang G, Nathwani AC. Sustained Clinical
624 Benefit of AAV Gene Therapy in Severe Hemophilia B. *N Engl J Med*. 2025; **392**: 2226–
625 34. 10.1056/NEJMoa2414783.

626 29 Pierce GF, Ozelo MC, Mahlangu J, Dunn AL, Beijleveldt M, Bender R, Carcao M, Coffin
627 D, Grazzi EF, Foster GR, Frantsve-Hawley J, Iorio A, Jackson S, Kaczmarek R, Kaeser
628 GE, Konkle BA, Lewandowska M, Miesbach W, O'Mahony B, Pipe S, Reiss UM, Wilson
629 AK, Gouider E. The WFH Guidelines for the Management of Haemophilia: AAV Gene
630 Therapy, 2025. *Haemophilia*. 2025. 10.1111/hae.70113.

631

632

633 **Tables and figures**634 **Tables**635 **TABLE 1.** Baseline demographics and clinical characteristics.

Characteristic	Neutralizing antibody-negative participants (n=33)
Age, mean (SD, min–max), years	39.5 (14.5, 21–73)
Race/ethnicity, n (%)	
White	28 (85)
Hispanic or Latino	2 (6)
Other	1 (3)
Missing	2 (6)
Positive HIV status, n (%)	2 (6)
Prior hepatitis B, n (%)	4 (12)
Prior or ongoing hepatitis C, n (%) ^a	17 (52)
Severity of hemophilia B at diagnosis, n (%)	
Severe (factor IX <1 IU/dL)	28 (85)
Moderately severe (factor IX ≥1 IU/dL and ≤2 IU/dL)	5 (15)
Pre-screening factor IX treatment, n (%)	
Extended half-life	17 (52)
Standard half-life	16 (48)
Participants with zero reported bleeds during the lead-in period, n (%)	11 (33)

636 ^aMost participants had experienced prior hepatitis C infections (n=16); one participant was undergoing
 637 eradication of hepatitis C at the time of screening and had evidence of hepatitis C virus eradication at the time
 638 of etranacogene dezaparvovec infusion.
 639 HIV, human immunodeficiency virus; max, maximum; min, minimum; SD, standard deviation.

640 **Figures**

641

642 **FIGURE 1.** Comparison of annualized bleeding rates between lead in and Months 7–48 (A)
643 and Years 1–4 post-gene therapy (B) (n=33).

644

645

646 *p<0.01 vs lead-in; **p<0.001 vs lead-in; ***p<0.0001 vs lead-in. Error bars in Figure 1B show the 95%
647 confidence interval.

648

649

650 **Figure 2.** Endogenous factor IX activity levels at Years 1–4 post-treatment (n=33)

651

652

653 ^aAssessed by one-stage activated partial thromboplastin time FIX activity assay. Only uncontaminated samples
654 were included in this analysis (i.e., blood sampling did not occur within 5 half-lives of exogenous FIX use).

655 FIX, factor IX; Q1–Q3, interquartile range.

656

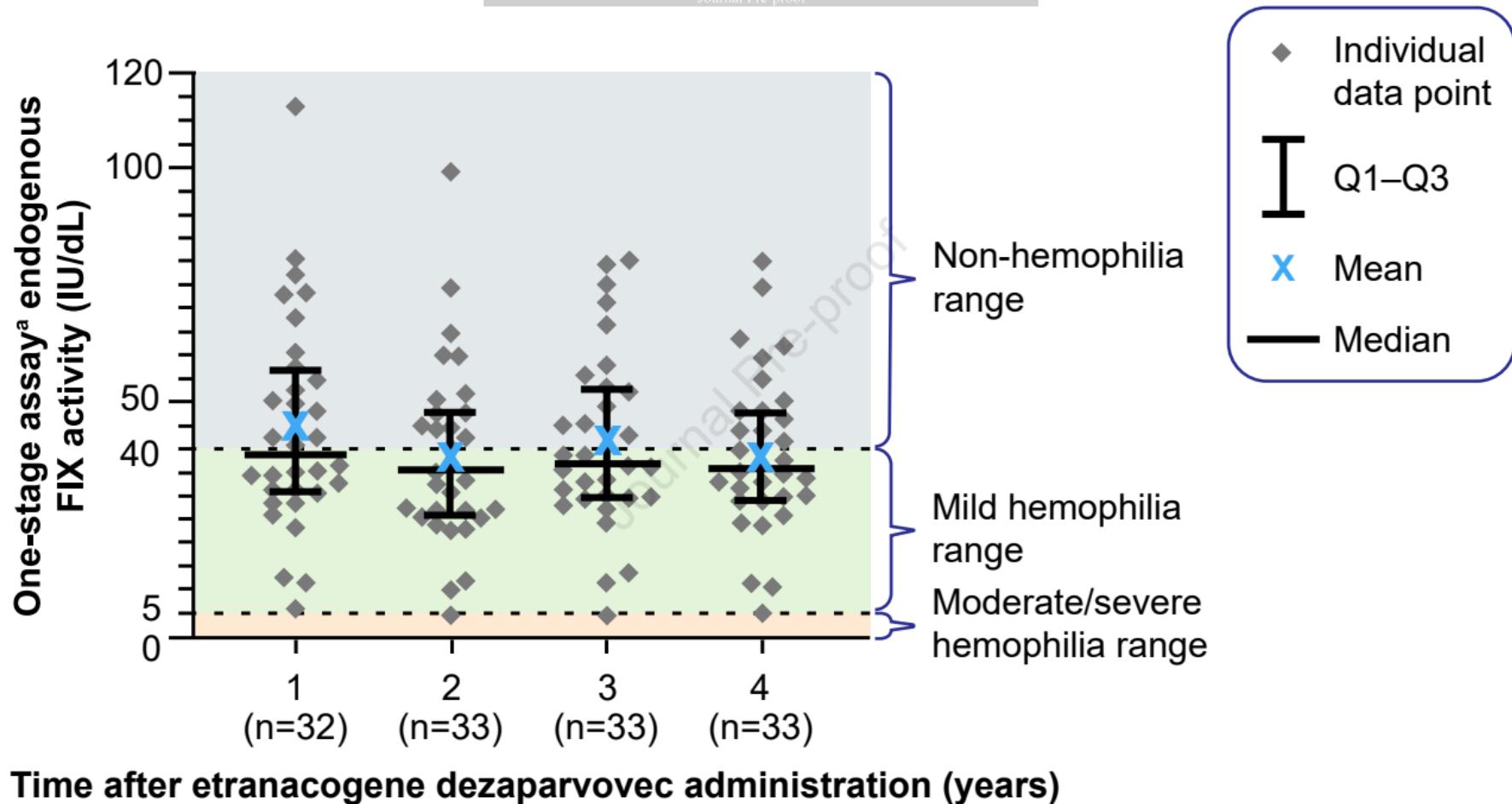
657

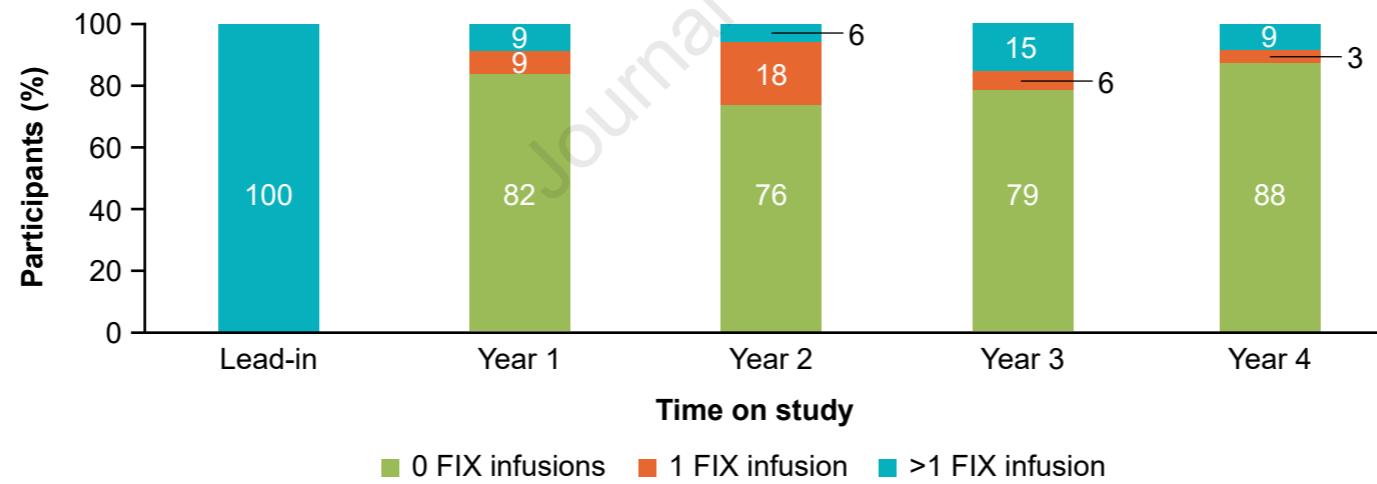
658 **FIGURE 3.** Proportion of neutralizing antibody-negative participants who required
659 exogenous factor IX infusions by year (n=33)^a.

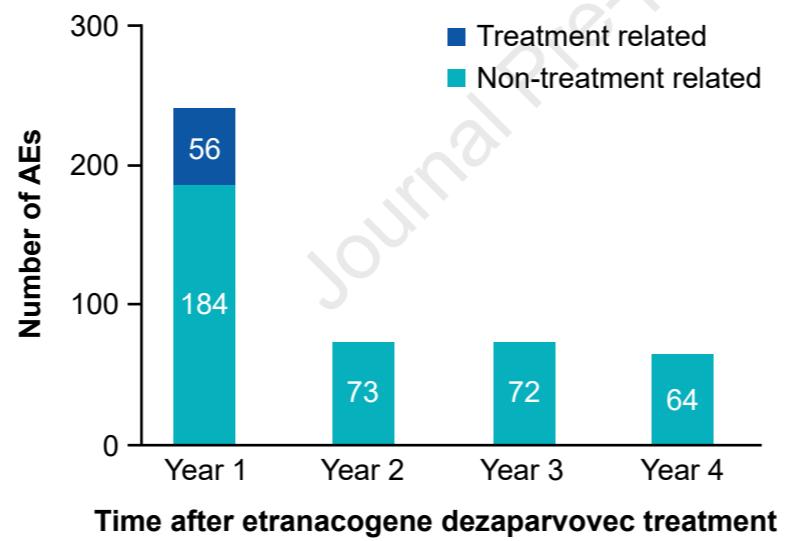
660

661 ^aFactor IX infusions for the management of invasive procedures were excluded from this analysis.

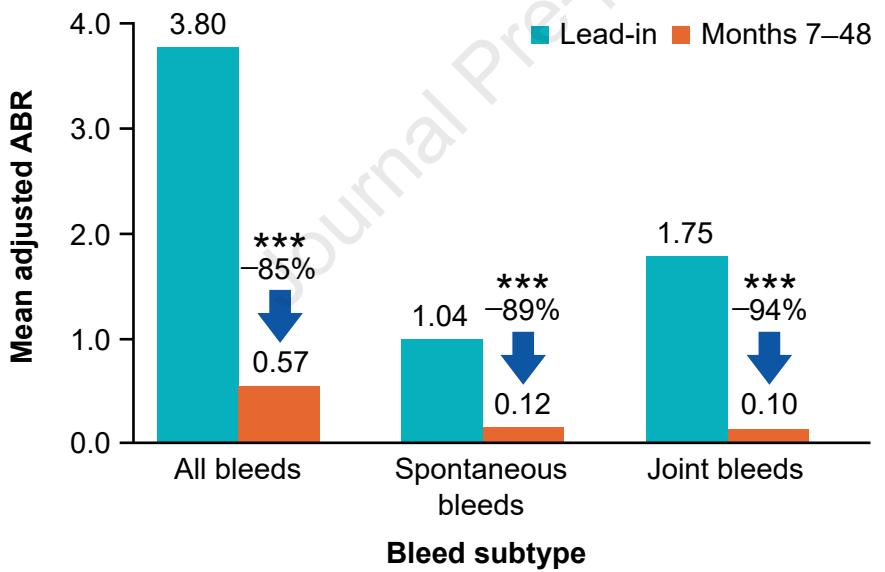
662

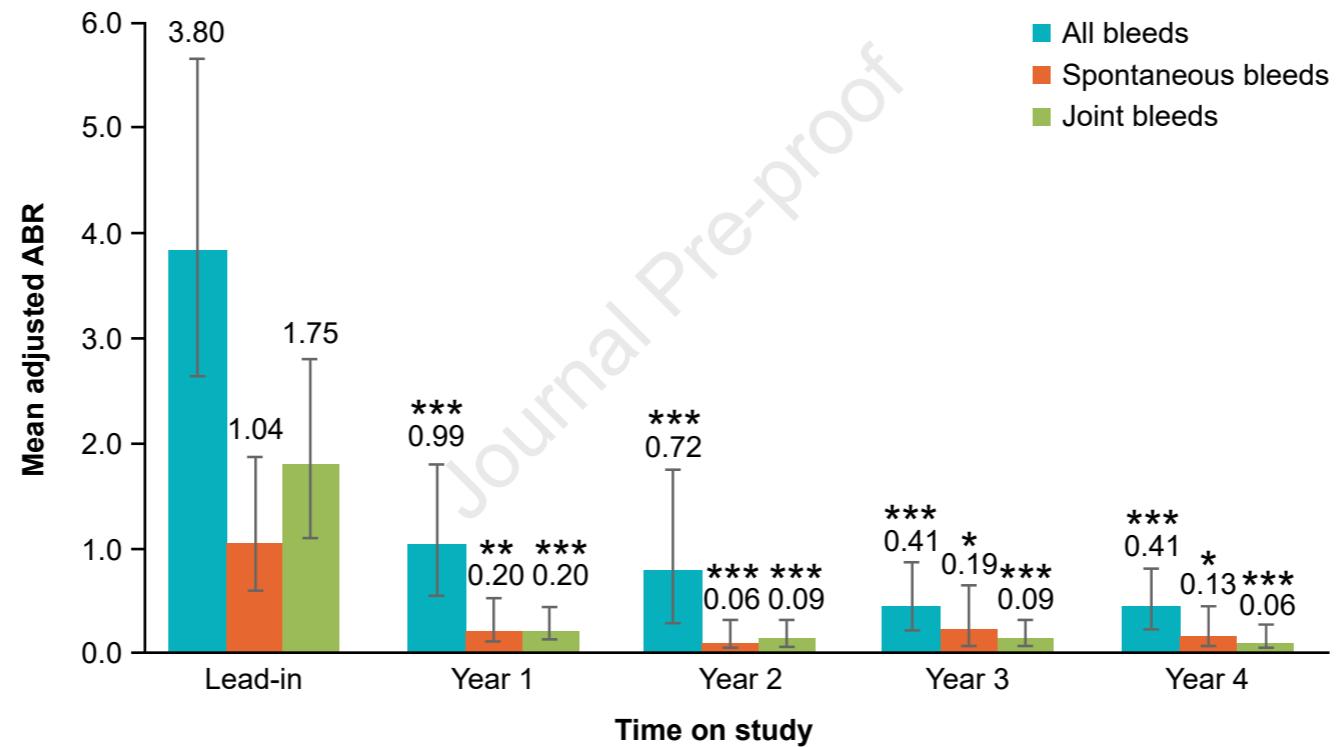

663 **FIGURE 4.** Number of treatment-related and non-treatment-related adverse events by year
664 post-gene therapy (n=33).


665


666 AEs, adverse events.

667


668



A

B

