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Social media post

Focus on patients without AAV5 neutralizing antibodies from the HOPE-B trial reveals lasting
bleeding reduction, stable near-normal FIX activity, and 100% freedom from FIX prophylaxis over 4

years posttreatment with etranacogene dezaparvovec.

#AAV #Hgenetherapy; #hemophilia #hemophiliaB; #etranacogenedezaparvovec; #HOPE-B;

#neutralizing antibody-negative
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Abstract

Background

In the phase 3 HOPE-B trial, a single dose of etranacogene dezaparvovec was administered
to participants with severe or moderately severe hemophilia B following a lead-in period (=6
months) in which they received factor IX (FIX) prophylaxis. Participants were enrolled
regardless of adeno-associated virus serotype 5 (AAV5) neutralizing antibody (NAb) status

at screening.

Objectives

To determine efficacy, pharmacokinetic, and safety outcomes over 4 years post-gene

therapy in HOPE-B participants who were NAb-negative (NAb-).

Methods

Participants provided serum samples for AAV5 NAb determination using an in vitro AAV5
transduction inhibition assay prior to etranacogene dezaparvovec infusion. Participants who

were AAVS5 NAb- at this time point were examined in this post hoc subgroup analysis.

Results

In NAb- participants (n=33), mean adjusted ABR was significantly reduced between Months
7—-48 post-etranacogene dezaparvovec versus lead-in (0.57 vs 3.80; p<0.0001). At 1, 2, 3,
and 4 years, ABRs were 0.99, 0.72, 0.41, and 0.41, respectively (p<0.0001 versus lead-in;
n=33 throughout). Mean (standard deviation) endogenous FIX activity was 40.6 (18.6) 1U/dL
at Month 6 post-infusion (n=33), remained stable, and was 39.0 (16.8) IU/dL at Year 4
(n=33). Exogenous FIX consumption decreased by 99% during Months 7—48 versus the
lead-in period, and no NAb- participant returned to continuous FIX prophylaxis over 4 years
post-infusion. No treatment-related oncogenic events or persistent late hepatotoxicity was

observed.
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Conclusions
Etranacogene dezaparvovec proved highly effective, superior to FIX prophylaxis for bleeding
protection, and safe over 4 years post-infusion in NAb— participants with severe or

moderately severe hemophilia B (NCT03569891).

Keywords: Gene Therapy, Hemophilia B, Neutralizing Antibody, Adeno-Associated Virus,

Factor IX

Essentials

HOPE-B tested etranacogene dezaparvovec in hemophilia B people with or without

vector antibodies

e This post-hoc study reports 4-year results post-gene therapy in antibody-negative
patients

e Etranacogene dezaparvovec was safe and reduced bleeding events, compared with
standard therapy

¢ Around half of patients produced stable FIX at the same level as people without

hemophilia
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Introduction

Treatment for hemophilia B, an X-linked bleeding disorder resulting in deficient factor IX
(FIX) activity, commonly involves FIX protein replacement therapies. However, despite
advances associated with newer FIX products, the lifelong need for regular infusions is
burdensome for people with hemophilia B.[1] Infusion-related treatment burdens include time
taken to prepare and administer treatment, pain during and/or after injections, and the need
to store medication and supplies.[2] Such burdens may cause a delay in treatment, missed
infusions, or a complete stopping of prophylactic treatment, resulting in a deterioration in

health outcomes for people with hemophilia B.[3]

The recent development of gene therapy for hemophilia B offers the potential of a single-
dose infusion, resulting in durable FIX expression, substantial reduction of treatment burden,
and improved patient quality of life.[1, 4] The most common method used to deliver the FIX
coding sequence into cells utilizes the adeno-associated virus (AAV), a non-replicative
single-stranded DNA parvovirus. Adeno-associated viruses offer several advantages for in
vivo gene therapy, including the absence of known pathogenicity in humans. Wild-type
AAVs demonstrate preferential tropism for specific target organs, and typically persist as
episomal circular DNA within the nucleus of host cells, with low genomic DNA integration
rates.[5] However, when recombinant AAV vectors are utilized in clinical trials, the dosing
regimens may lead to higher absolute integration rates in targeted tissues, warranting careful
consideration and long-term monitoring.[6] Several AAV serotypes that vary in capsid amino
acid sequence homology and other features have been used in gene therapy.[1, 7-10] Wild-
type AAVs occur naturally in the environment, and therefore people who are exposed to a
wild-type AAV can develop neutralizing antibodies to the viral capsid[11-13] that are cross-
reactive with recombinant AAVs of the same or different serotypes; cross-neutralization has
the potential to inhibit transduction of the target tissue during gene therapy.[14]
Consequently, people with pre-existing AAV neutralizing antibodies have generally been

excluded from clinical trials of AAV-based gene therapies. For example, a phase 3 trial of a
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gene therapy that utilized a recombinant AAV serotype rh74 capsid excluded participants
based on the presence of AAV rh74 neutralizing antibodies; of 316 men screened, 188

(60%) were ineligible to enter the trial on this basis.[15]

Etranacogene dezaparvovec is an AAV serotype 5 (AAV5)-based gene therapy with a
codon-optimized gene expression cassette encoding the naturally occurring human FIX
Padua (R338L) variant.[16, 17] The primary analysis of the pivotal phase 3 HOPE-B trial
(ClinicalTrials.gov identifier: NCT03569891) of etranacogene dezaparvovec (CSL222,
HEMGENIX®) demonstrated significantly improved bleeding outcomes in participants with
hemophilia B (FIX <2 IU/dL) who had previously been receiving standard-of-care continuous
FIX prophylaxis.[16, 17] Data from the previous phase 2b trial of etranacogene
dezaparvovec showed that FIX expression was maintained for at least 5 years in
participants.[18] In contrast to most AAV-based gene therapy clinical trials, HOPE-B enrolled
participants with and without AAVS neutralizing antibodies.[17] However, few data on long-
term outcomes following gene therapy for hemophilia B in patients according to neutralizing
antibody status are available. In the post-hoc analysis of the HOPE-B study reported here,
long-term efficacy and tolerability outcomes were assessed in the subgroup of participants
without AAV5 neutralizing antibodies prior to etranacogene dezaparvovec infusion.
Screening determination of AAV5 neutralizing antibody status is available not only in the
clinical trial setting, but also for individuals with hemophilia B considering etranacogene
dezaparvovec therapy in the real-world setting. Importantly, individuals without AAV5
neutralizing antibodies constitute the majority, representing approximately 55-60% of the

global population.[11, 19, 20]

This post hoc analysis provides the longest-term follow-up to date from a phase 3 study of
systemically-delivered, liver-directed AAV-based gene therapy in hemophilia B. Focusing on
the most prevalent population, individuals without AAV5 neutralizing antibodies, these

results inform clinical decision-making for these specific individuals and facilitate more
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Methods

Study participants

The HOPE-B study enrolled adult males with severe (FIX activity <1 IU/dL) or moderately
severe (FIX activity between 1-<2 1U/dL) hemophilia B. Participants were required to have
been receiving stable, continuous FIX prophylaxis for 22 months prior to screening, with the
specific dose and product determined by their physician. Informed consent was another
inclusion criterion. Following screening, participants then continued to receive their
continuous FIX prophylaxis regimen during the lead-in period of 6 months or longer. Key
exclusion criteria included a history of FIX inhibitors, active hepatitis B or C viral infection,
and known severe infection or another significant concurrent uncontrolled medical
condition. Neutralizing antibody positivity was not an exclusion criterion. Full eligibility
criteria have been reported previously.[17] Participants eligible for this post hoc analysis of
the HOPE-B study were AAV5 neutralizing antibody-negative on the day of dosing, prior to

etranacogene dezaparvovec infusion.

Study design

HOPE-B was a phase 3, open-label, multinational study in which participants received a
single intravenous dose of etranacogene dezaparvovec at 2x10'3 genome copies per kg
body weight and were planned to be followed for 5 years post-gene therapy. The trial was
conducted in accordance with the International Council for Harmonisation Good Clinical
Practice guidelines and the ethical principles stated in the Declaration of Helsinki. The
study protocol was approved by independent ethics committees and institutional review

boards at each study site.

The primary endpoint of HOPE-B was the annualized bleeding rate during a 52-week
period from Months 7—18 post-gene therapy. Secondary endpoints included endogenous
FIX activity (measured by a one-stage assay) at 26 and 52 weeks after steady-state FIX

activity was reached as well as factor replacement use, frequency and severity of adverse



155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

events, and reactive use of corticosteroids. We report here a post-hoc subgroup analysis of
efficacy, pharmacokinetic, and safety outcomes over 4 years in participants who were
neutralizing antibody-negative on the day of dosing prior to etranacogene dezaparvovec

infusion.

Analysis of adeno-associated virus neutralizing antibodies

Serum samples for AAVS neutralizing antibody determination were obtained from
participants during the screening period, lead-in period (at 8 weeks and 4 weeks prior to
etranacogene dezaparvovec infusion), and on the day of etranacogene dezaparvovec
infusion. A central laboratory assessed AAV5 neutralizing antibody levels (Precision for
Medicine, Frederick, USA). This cell-based neutralizing antibody assay assessed the
potential for participant serum to inhibit the in vitro transduction of mammalian cells by
AAVS5 reporter vector expressing luciferase. Descriptions of antibody determination

methodology have been reported previously.[16, 17]

Molecular analysis to assess neoplasm transformation

Molecular analyses were conducted for the detection of vector integration sites by
ProtaGene CGT GmbH (Heidelberg, Germany), independently from the sponsor, on DNA
samples extracted from neoplasm tissue and blood. A detailed description of the analyses

can be found in the Supplementary materials.

Briefly, DNA was extracted using the QlAamp DNA Mini Kit (Qiagen). A polymerase chain
reaction (PCR) with vector-specific primers (hFIXco_FW and hFIXco_RV) was performed on
10 ng DNA per sample with vector-containing plasmids as positive control. Whole genome
sequencing data were analyzed for the detection of integration sites (IS) and to perform

somatic variant calling.

Statistical analysis

Demographic and baseline characteristics were summarized descriptively using sample

size (n), mean, standard deviation (SD), minimum, maximum, median, and interquartile
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range (IQR) for continuous measurements, and frequency and percentages (%) for
categorical variables. Adjusted annualized bleeding rates and comparison of annualized
bleeding rates between lead-in and post-gene therapy period are estimated from a
repeated-measures regression model with a negative binomial distribution and using
generalized estimating equations, with an offset term accounting for the paired design and
the differential collection periods. One-stage activated partial thromboplastin time-based
(SynthaSIL®) FIX activity measurements (expressed as |U/dL) from the central laboratory
were summarized descriptively. Post-gene therapy FIX samples were considered
contaminated and were excluded from the analysis if drawn within 5 half-lives of FIX
concentrate administration, on the basis of the reported half-life of each product.
Annualized FIX consumption, excluding FIX replacement for invasive procedures, was
computed for each period by dividing the total consumption by the time under observation
(in years) and compared between the post-gene therapy and lead-in phase using a two-
sided paired t test (using the pair of values from each participant). The analyses reported
here describe a retrospective post-hoc examination of data collected prospectively during
the lead-in phase and 4 years of follow-up for all participants treated in the HOPE-B phase
3 trial which was not specifically powered to detect significant differences or associations.

All analyses were performed in SAS 9.4; figures were generated using GraphPad®.

Data availability statement

Individual participant data will not be shared. CSL Behring can provide scientific researchers
access to deidentified participant data collected in clinical trials to improve participant care to
support the advancement of medical science. Any data requests should be sent to this email

address: Office. CMO@cslbehring.com

10



204 Results

205  Participants

206  The study began on June 27, 2018, and this 4-year post-hoc analysis includes data up to
207  June 03, 2024. Overall, 33 of 54 participants in HOPE-B were AAV5 neutralizing antibody-
208 negative on the day of dosing, prior to etranacogene dezaparvovec infusion. Baseline

209  demographics for these participants are shown in Table 1. Most participants (85%) had a
210  severe hemophilia B diagnosis (FIX <1 1U/dL) and around half (52%) had experienced a
211  prior hepatitis C viral infection. All 33 participants completed 4 years of follow-up after

212 etranacogene dezaparvovec infusion.

213  Annualized bleeding rates

214 In the neutralizing antibody-negative participants (n=33), the mean adjusted annualized
215  bleeding rate (all bleeds) was reduced by 85% (two-sided Wald confidence interval [CI]:
216 75-91; p<0.0001), from 3.80 during lead-in to 0.57 between Months 7—48 post-

217  etranacogene dezaparvovec infusion (Figure 1A). Mean adjusted annualized bleeding
218 rates for all bleeds at 1, 2, 3, and 4 years post-etranacogene dezaparvovec infusion were
219 0.99, 0.72, 0.41, and 0.41, respectively (all p<0.0001 vs lead-in; n=33 at all time points;

220  Figure 1B).

221  Compared with the lead-in period, the mean adjusted annualized bleeding rate for

222 spontaneous bleeds was reduced by 89% (two-sided Wald 95% CI: 64—96; p<0.0001), from
223 1.04 during lead-in to 0.12 over Months 7—48 (Figure 1A). Mean adjusted spontaneous

224  annualized bleeding rates were 0.20, 0.06, 0.19 and 0.13 at Years 1, 2, 3, and 4 post-

225  etranacogene dezaparvovec infusion, respectively (p<0.001, p<0.0001, p<0.01, and

226  p<0.01, respectively, vs lead-in; Figure 1B).

227  Similarly, the mean adjusted ABR for joint bleeds was reduced by 94% (two-sided Wald
228  95% CI: 88-97; p<0.0001), from 1.75 during lead-in to 0.10 during Months 7—-48 (Figure

229 1A). AtYears 1, 2, 3, and 4, mean adjusted joint annualized bleeding rates were 0.20, 0.09,

11
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0.09, and 0.06 post-etranacogene dezaparvovec infusion, respectively (all p<0.0001 vs

lead-in; Figure 1B).

These reductions in ABR and the associated p-values met the statistical thresholds for both

non-inferiority and superiority when compared with the lead-in standard-of-care treatment.

Endogenous factor IX activity

All 33 participants who were neutralizing antibody-negative expressed endogenous
transgene-derived FIX post-gene therapy (Figure 2). Mean (SD) endogenous FIX activity
was 40.6 (18.6) IU/dL at Month 6 (n=33), remained stable over 4 years post-gene therapy,
and was 39.0 (16.8) IU/dL at Year 4 (n=33). Median (range) FIX activity at Year 4 was 35.7

(4.7-80.1) 1U/dL.

Use of exogenous factor IX

Over the 4-year time period reported here, no neutralizing antibody-negative participant
returned to continuous exogenous FIX prophylaxis following etranacogene dezaparvovec
infusion. In each year post-gene therapy, approximately 80% of neutralizing antibody-
negative participants did not require any exogenous FIX infusions (Figure 3). During the
lead-in period, bleeds requiring FIX treatment comprised 82% of total bleeds; post-gene
therapy, 37% of all bleeds over 4 years required exogenous FIX treatment. Exogenous FIX
consumption, excluding invasive procedures, decreased by 99%, from a mean (SD) of
264,888 (153,545) IU/year during the lead-in period to a mean (SD) of 1,878 (3337) IU/year
during Months 7—48 post-gene therapy (mean [standard error] reduction of 263,010 [26615]

IU/year; p<0.0001; n=33).

Safety

Of 455 treatment-emergent adverse events reported in neutralizing antibody-negative
participants (Figure 4) during Years 1-4 post-etranacogene dezaparvovec infusion, 78%
were mild, 19% moderate, and 3% severe. Overall, 22 of 33 participants experienced

treatment-related adverse events during the first 3 months following etranacogene

12
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dezaparvovec infusion; no treatment-related adverse events were reported from 3 to 42
months of follow up and one participant reported three treatment-related adverse events
during Months 43—48. The most frequent treatment-related adverse event was transient
alanine transaminase elevation in six (18%) participants (Figure $1). These elevations
occurred between 22 and 71 days post-etranacogene dezaparvovec infusion. The peak
alanine aminotransferase level for one participant was 2-fold the upper limit of normal, for
three participants, peak alanine aminotransferase elevations were between 1-2-fold the
upper limit of normal, while for two participants peak alanine aminotransferase elevations
were approximately 2-fold the value of the participants’ pre-gene therapy baseline alanine
aminotransferase levels; however, these elevations remained within normal limits. Five out
of 6 participants with treatment-related alanine aminotransferase elevations and one
participant with non-treatment related alanine aminotransferase elevations received a
reactive course of corticosteroid treatment, with the mean (SD) total duration of
corticosteroid use for these participants being 79.5 (30.3) days. Time to receipt of
corticosteroid treatment following alanine aminotransferase elevation ranged from 0 to 21
days. Mean (SD) endogenous FIX activity at or near the time of corticosteroid initiation was
20.8 (10.3) IU/dL (n=6). Mean (SD) endogenous FIX activity remained stable over 4 years
post-gene therapy and was 20.5 (13.5) IU/dL (n=6) at Year 4. Median (range) FIX activity at

Year 4 was 18.5 (4.7-37.6) IU/dL (n=6) (Figure S1).

No persistent late hepatotoxicity was observed, including in participants who experienced
early liver inflammation and those with a history of chronic viral hepatitis. No serious adverse
events considered related to treatment, development of inhibitors, or thrombotic events were
reported. No oncogenic events considered related to treatment were reported. During Year
4, one serious adverse event of glossopharyngeal schwannoma was observed in one
neutralizing antibody-negative participant and explored by molecular analysis for vector
integration. No evidence of AAV5 vector DNA in tumor or control sample was detected using

polymerase chain (PCR), no integration events were identified in affected tissue using whole

13
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genome sequencing, while premalignant signatures of somatic NF2 defects consistent with
the development of a schwannoma were found; consequently, this serious adverse event
was considered unrelated to treatment. A detailed description of the patient narrative,
molecular analyses for the detection of integration site, and identification of relevant genetic
signatures and corresponding findings are provided in the Supplementary Materials,

including Figure S2 and Figure S3.
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Discussion

The present manuscript provides 4-year follow-up data from a phase 3 gene therapy trial,
representing the longest duration of post-treatment observation in such a setting to date,
supporting the sustained efficacy and durability of AAV-based gene therapy for hemophilia
B. Additionally, the post-hoc analysis includes detailed outcomes for the participants who
tested negative for AAV5 neutralizing antibodies prior to etranacogene dezaparvovec. This
subgroup not only represented the largest subset within the trial but also reflects the
expectation that most individuals with hemophilia B do not have pre-existing neutralizing

antibodies to AAVS5, conversely to other AAV serotypes. [11, 19, 20]

Neutralizing antibody-negative participants demonstrated that they had stable endogenous
FIX activity over 4 years of follow-up post-gene therapy, accompanied by durable bleed
protection and limited treatment-related adverse events, with no treatment-related adverse
events reported after Month 3 post-gene therapy. While it has been previously reported that
2 participants with pre-existing AAV5 neutralizing antibodies did not express endogenous
transgene-derived FIX Padua protein following treatment with etranacogene
dezaparvovec,[16, 17] all treated neutralizing antibody-negative participants expressed
stable endogenous transgene-derived FIX throughout the 4-year analysis period, with the
median value of one-stage FIX activity levels at 4 years follow-up being 35.7 IU/dL; the
median value for the intent-to-treat population (N=54), ie. including neutralizing antibody-
positive participants, at 4 years was 34.6 IU/dL (data on file). Approximately half of the
neutralizing antibody-negative participants had endogenous FIX activity that was in the
non-hemophilia range. However, the response was variable, with endogenous FIX values
ranging from 4.7 through to 80.1 IU/dL at Year 4. The impact of early alanine
aminotransferase elevation on FIX expression was one important contributor to the
observed wide variation in response — three participants with alanine aminotransferase
elevations also had the lowest endogenous FIX values (<15 IU/dL) at Years 1, 2, 3, and 4.

Of note, these participants already had the lowest FIX expression prior to the occurrence of

15
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alanine aminotransferase elevation. With the exception of these three individuals, all
neutralizing antibody-negative participants maintained >20 IU/dL FIX activity through
Months 7—48. Transient liver function abnormalities treated with corticosteroids during the
first 6 months after gene therapy were not associated with subsequent instability or
decreases in endogenous FIX activity during the months 7—48 follow-up; FIX expression
that was preserved at discontinuation of corticosteroids was in general maintained at stable
levels through the remainder of the follow-up period. Moreover, all endogenous FIX levels,
including the lower values, allowed discontinuation of continuous FIX prophylaxis in the first
weeks after gene therapy, and all neutralizing antibody-negative participants remained free

of continuous FIX prophylaxis during the 4-year analysis period.

Focusing exclusively on the subset of HOPE-B participants with undetectable pre-existing
AAV5 neutralizing antibodies is valuable, as it enables a meaningful indirect comparison
with other AAV-based gene therapy trials for both hemophilia A and hemophilia B. This is
because most of these trials [21] have excluded participants who were baseline AAV
antibody-positive to their respective AAV vectors, primarily due to concerns that AAV

neutralizing antibodies would prevent transduction of target cells.

Moreover, few studies have reported long-term pharmacokinetic and efficacy data for
hemophilia gene therapies. Long-term data are essential to determine the durability and
safety of this recently developed therapeutic modality, and to guide development of future
gene therapies. Long-term maintenance of therapeutic levels of endogenous factor VIII
expression has been challenging in trials of gene therapy for participants with hemophilia
A.[12, 22] In a 5-year analysis of the phase 3 factor VIII gene therapy GENEr8-1 trial of
valoctocogene roxaparvovec (N=134; all of whom were AAVS5 immunoglobulin G- binding
antibody-negative pre-gene therapy) mean (standard error) chromogenic assay-assessed
endogenous factor VIII activity was 13.7 (2.1) IU/dL (mean one stage assay-assessed
factor VIII: 24.0 IU/dL) at Year 5; mean annualized bleeding rate for treated bleeds was 0.6

and 78% of patients had 0 bleeds during Year 5.[23] However, despite these relatively
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positive outcomes, 19% of patients required re-initiation of factor VIII replacement treatment

within 5 years post-gene therapy.[22, 23]

Through use of the gain-of-function Padua FIX variant in hemophilia B gene therapy, long-
term stable expression of FIX at protective levels has been observed, although the extent of
protection appears to vary according to gene therapy.[15] Three- and five-year follow up
data from the initial phase 2b trial of etranacogene dezaparvovec (N=3; all participants
were neutralizing antibody-positive) also showed sustained endogenous factor I1X activity
(36.9 and 45.7 IU/dL at Year 3 and 5 post-gene therapy, respectively), a significant
reduction in bleeding events and a significant decrease in requirement for exogenous FIX,
supporting the longer term therapeutic benefit of FIX Padua-based gene therapy.[24, 25]
The HOPE-B post-hoc analysis reported herein found a mean adjusted all-bleed annualized
bleeding rate for all bleeds of 0.57 between Months 7—48 post-etranacogene dezaparvovec
infusion and importantly, showing superior results compared to other vectors in late stage
development Indeed, another phase 3 study (N=45) of hemophilia B gene therapy
fidanacogene elaparvovec, also utilizing FIX Padua, reported mean endogenous one-stage
FIX activity of 26.9 IU/dL at month 15 post-gene therapy in participants with hemophilia B,
all of whom were AAV neutralizing antibody-negative (for the AAVrh74 serotype used in
that trial.[15] This resulted in an annualized bleeding rate for all bleeds of 1.28 at Month 15
post-gene therapy. Although longer-term follow up of this trial is not available yet, it is
notable that already 6 out of 45 participants returned to continuous FIX prophylaxis within
fewer than 15 months after fidanacogene elaparvovec administration. In contrast, it is
remarkable that no neutralizing antibody-negative-participants returned to continuous FIX
prophylaxis over the 4-year period post-etranacogene dezaparvovec reported here. The
mechanisms underlying the observed superior outcomes observed with etranacogene
dezaparvovec in neutralizing antibody-negative participants compared to other AAV vectors
remain unknown. A range of factors, including capsid-specific immune responses,

transduction efficiency and dosing, vector genome attributes (such as CpG content),
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396

manufacturing process, and the recipient’s hepatic function and immunological profile, can
collectively influence both the durability and extent of transgene expression, as well as the
potential for related hepatotoxicity. Adverse events considered related to etranacogene
dezaparvovec, which was administered at a dose of 2x10'® genome copies per kg body
weight, occurred in 67% of neutralizing antibody-negative participants, all within the first 3
months after gene therapy administration. The most common treatment-related adverse
event was transiently increased alanine aminotransferase levels, occurring in 18% of
participants, which were successfully managed using corticosteroid therapy, with stable
endogenous FIX activity achieved and none of these participants requiring a return to
continuous exogenous FIX prophylaxis. However, due to potential effects on hepatocyte-
derived FIX Padua expression, as previously discussed, it is important to closely monitor
liver transaminases in the first few months after gene delivery. This allows for immediate

supportive care with corticosteroids to minimize impact on treatment efficacy.

In contrast, in BENEGENE-2, a phase 3 trial in which participants received a single dose of
fidanacogene elaparvovec of 5x10"" genome copies per kg body weight,[15] 24/45 (53%)
participants experienced increased transaminase levels. Of the six participants who
resumed continuous exogenous FIX prophylaxis due to low FIX activity, all had received at
least one course of glucocorticoids (2 of these participants received 2 courses of steroids
for increased transaminase levels). A recent phase 1 study (N=10) of BBM-H901, an AAV
vector expressing Padua FIX, reported 1 (10%) participant with treatment-related alanine
aminotransferase elevation which was associated with a decrease in FIX activity. In this
study, participants were excluded if they had a hepatitis B or C virus infection, alanine
aminotransferase levels higher than 2-fold the upper limit of normal or liver conditions such
as liver fibrosis stage 23; all participants received per-protocol prophylactic glucocorticoids
from day 7 prior to BBM-H901 infusion, and for approximately 7-9 weeks afterwards.[26]
This suggests that prophylactic corticosteroids neither fully prevent post-gene therapy

alanine aminotransferase elevations nor support long-term stability of FIX activity. Notably,
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etranacogene dezaparvovec was associated with infrequent and mild alanine
aminotransferase elevations, all effectively managed with short, reactive corticosteroid
courses, and was not associated with decreases in FIX levels after support with
corticosteroids was initiated, underscoring that timely corticosteroid initiation at the first sign

of alanine aminotransferase elevation is essential for maintaining stable FIX levels.

Regarding long-term safety, the case of the participant who developed a schwannoma was
comprehensively evaluated using molecular analyses, including tests for vector integration.
There was no evidence of vector DNA in the analyzed tissues, and no vector integration was
detected within schwannoma sample, so that vector involvement could be excluded. The
results were concordant with the established preferential hepatic tropism of the AAV5
serotype, and align with the low integration frequency characteristic of recombinant AAV
vectors as described in previous clinical reports.[27, 28] In more than two decades of clinical
use, AAV-based gene therapy for hemophilia has not resulted in any confirmed cases of
AAV-related cancer, despite concerns about potential insertional mutagenesis.[22] While
ongoing long-term follow-up studies continue to characterize the safety profile and address
any latent risks, current evidence increasingly supports the benign nature of AAV vector
integration in the clinical setting. However, an estimated 0.1-3% of liver-targeted
recombinant AAV vector may integrate into hepatocyte DNA, which potentially equates to
many million hepatic integration events at the dose of 2 x 10'3 genome copies per kg
bodyweight. Therefore, continued monitoring with special focus on hepatic neoplasms,
including long-term registry follow ups, remains scientifically valuable, especially to reinforce
confidence in the safety of AAV-based therapies and guide evidence-based risk-benefit

assessments and post-marketing strategies.[29]

Limitations of this post-hoc subgroup analysis include the fact that it was not prespecified
and the relatively low participant numbers. However, given the low number of people with

hemophilia B in the general population, we believe that the insights into the efficacy and

19



423

424

425

426

427

428

429

430

431

432

433

434

435

436

safety of etranacogene dezaparvovec in neutralizing antibody-negative participants

generated by this analysis have high clinical value.

Conclusions

All participants with severe to moderately severe hemophilia B in the HOPE-B trial who
tested negative for AAV5 neutralizing antibodies prior to etranacogene dezaparvovec
infusion expressed endogenous FIX at therapeutic levels, and durable bleed protection was
achieved over a 4-year period, with no participants returning to continuous FIX prophylaxis
during this time frame. No treatment-related adverse events occurred after the first 3
months following gene therapy; importantly, no events of AAV5-associated genotoxicity and
no events of persistent late hepatotoxicity were observed. These data provide important
information that will allow physicians and individuals with hemophilia B considering
etranacogene dezaparvovec gene therapy to assess and understand potential outcomes,

allowing informed decision making.
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Tables and figures

Tables

TABLE 1. Baseline demographics and clinical characteristics.

Characteristic

Neutralizing antibody-negative

participants (n=33)

Age, mean (SD, min—-max), years

Race/ethnicity, n (%)
White
Hispanic or Latino
Other
Missing
Positive HIV status, n (%)
Prior hepatitis B, n (%)
Prior or ongoing hepatitis C, n (%)

Severity of hemophilia B at diagnosis, n (%)
Severe (factor IX <1 |U/dL)
Moderately severe (factor IX =21 |U/dL and <2

IU/dL)

Pre-screening factor IX treatment, n (%)
Extended half-life

Standard half-life

Participants with zero reported bleeds during

the lead-in period, n (%)

39.5 (14.5, 21-73)

17 (52)

28 (85)

5 (15)

17 (52)

16 (48)

11 (33)

aMost participants had experienced prior hepatitis C infections (n=16); one participant was undergoing

eradication of hepatitis C at the time of screening and had evidence of hepatitis C virus eradication at the time

of etranacogene dezaparvovec infusion.

HIV, human immunodeficiency virus; max, maximum; min, minimum; SD, standard deviation.
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Figures

FIGURE 1. Comparison of annualized bleeding rates between lead in and Months 7—48 (A)

and Years 1—4 post-gene therapy (B) (n=33).

*p<0.01 vs lead-in; **p<0.001 vs lead-in; ***p<0.0001 vs lead-in. Error bars in Figure 1B show the 95%

confidence interval.

Figure 2. Endogenous factor I1X activity levels at Years 1-4 post-treatment (n=33)

aAssessed by one-stage activated partial thromboplastin time FIX activity assay. Only uncontaminated samples
were included in this analysis (i.e., blood sampling did not occur within 5 half-lives of exogenous FIX use).

FIX, factor I1X; Q1-Q3, interquartile range.
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FIGURE 3. Proportion of neutralizing antibody-negative participants who required

exogenous factor IX infusions by year (n=33)2.

aFactor IX infusions for the management of invasive procedures were excluded from this analysis.

32



663
664

665

666

667

668

FIGURE 4. Number of treatment-related and non-treatment-related adverse events by year

post-gene therapy (n=33).

AEs, adverse events.
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